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ABSTRACT— In this paper a linear Volterra integro-differential equation is studied. Example of this question has 

been solved numerically using Cash-Karp method for ODE (Ordinary Differential Equation) parts and Newton-Cotes 

formulae (quadrature rules) for integral part. Finally, a new fifth order routine is used for the numerical solution of 

the linear Volterra integro-differential equation. 
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1. INTRODUCTION 

This paper presents some numerical methods for the solution of linear integro-differential equation namely; Runge-Kutta 

method of order five. Runge-Kutta method attempts to obtain greater accuracy. Numerical experiments were taken into 

consideration to determine the accuracy of the methods. An explicit Runge-Kutta method of order five is more accurate 

than the third orders and fourth orders Runge-Kutta methods (see [22, 23, 18]). In this paper, we shall only focus on the 

fifth order Runge-Kutta method. We will derive here the numerical solution of the linear Volterra integro-differential 

equation of the fifth-order Runge method using a following form: 
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The numerical solution of the ordinary differential equation     
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The methods listed on this page are each defined by its Butcher tableau, which puts the coefficients of the method in a 

table as follows: 

  

 

(4) 

  

 

2. EXPICIT METHODS 

The explicit methods are those where the matrix  ][ ija  is lower triangular. 

The third-order Runge-Kutta method:  This method is a third order Runge-Kutta method for approximating the 

solution of the initial value problem (2) which evaluates the integrand, f(t,u(t)), three times per step. 
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Classical fourth-order Runge-Kutta method: The Butcher tableau corresponding to the Rk4 method 

 

the equivalent corresponding equations defining the classical RK4 method: 
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Recently, the fourth order classical Runge-Kutta method (RK4) has been adapted to the numerical solution of equation 

(1) by Filiz (see [18]). 

3/8-rule fourth-order method: This method doesn't have as much notoriety as the "classical" method, but is just as 

classical because it was proposed in the same paper (see [21]). 
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3. EMBEDDED METHODS 

The embedded methods are designed to produce an estimate of the local truncation error of a single Runge-Kutta step, 

and as result, allow controlling the error with adaptive stepsize. This is done by having two methods in the tableau, one 

with order p and one with order p-1. 

3.1 Bogacki–Shampine 

The Bogacki–Shampine method is a method for the numerical solution of ordinary differential equations, which was 

proposed by Przemyslaw Bogacki and Lawrence F. Shampine in 1989 ([12]). The Bogacki–Shampine method has two 

methods of orders 3 and 2. Its extended Butcher Tableau is: 

 
0 

 
1/2 1/2 

 
3/4 0 3/4 

 
1 2/9 1/3 4/9 

 

  
2/9 1/3 4/9 0 

  
7/24 1/4 1/3 1/8 

The first row of b coefficients gives the third-order accurate solution, and the second row has order two. 

Following the standard notation, the differential equation to be solved is ))(,()(' tutftu  . Furthermore, )(~
ntu or nu~  

denotes the numerical solution at time nt  and h  is the step size, defined by kk tth  1  or ntth n /)( 0 . Then, one 

step of the Bogacki–Shampine method is given by: 
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Here,  *1
~

nu  is a second-order approximation to the exact solution. The method for calculating 1
~

nu  is due to [13]. On 

the other hand, 1
~

nu  is a third-order approximation, so the difference between 1
~

nu  and  *1
~

nu  can be used to adapt the 

step size. 

3.2 Dorman-Prince Method 

In numerical analysis, the Dormand–Prince method, or DOPRI method, is an explicit method for solving ordinary 

differential equations ([14]). The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it 

uses six function evaluations to calculate fourth- and fifth-order accurate solutions. This error estimate is very convenient 

for adaptive stepsize integration algorithms. Other similar integration methods are Fehlberg (RKF) and Cash–

Karp (RKCK). 

 Dormand and Prince choose the coefficients of their method to minimize the error of the fifth-order solution. This is the 

main difference with the Fehlberg method, which was constructed so that the fourth-order solution has a small error. For 
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this reason, the Dormand–Prince method is more suitable when the higher-order solution is used to continue the 

integration, a practice known as local extrapolation [14].  The extended tableau for the Dormand–Prince method is: 

 
0 

 
1/5 1/5 

 
3/10 3/40 9/40 

 
4/5 44/45 −56/15 32/9 

 
8/9 19372/6561 −25360/2187 64448/6561 −212/729 

 
1 9017/3168 −355/33 46732/5247 49/176 −5103/18656 

 
1 35/384 0 500/1113 125/192 −2187/6784 11/84 

 

  
5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40 

  
35/384 0 500/1113 125/192 −2187/6784 11/84 0 

 

The first row of b coefficients gives the fourth-order accurate solution, and the second row has order five. 

 

3.3  Runge–Kutta–Fehlberg method 

 

 Runge–Kutta–Fehlberg method (RKF5) is an algorithm in numerical analysis for the numerical solution of ordinary 

differential equations. The novelty of Fehlberg's method is that it is an embedded method from the Runge-Kutta family, 

meaning that identical function evaluations are used in conjunction with each other to create methods of varying order 

and similar error constants. The method presented in Fehlberg's 1969 paper has been dubbed the RKF45 method, and is a 

method of order O(h4) with an error estimator of order O(h5) ([16]). Its extended Butcher Tableau is: 

 

 
0 

 
1/4 1/4 

 
3/8 3/32 9/32 

 
12/13 1932/2197 −7200/2197 7296/2197 

 
1 439/216 −8 3680/513 −845/4104 

 
1/2 -8/27 2 −3544/2565 1859/4104 −11/40 

 

  
25/216 0 1408/2565 2197/4104 −1/5 0 

  
16/135 0 6656/12825 28561/56430 −9/50 2/55 

 

The first row of b coefficients gives the fourth-order accurate solution, and the second row has order five. The fifth order 

Runge–Kutta–Fehlberg (RKF5) has been adapted to the numerical solution of equation (1) by Filiz (see [19]). 

 

3.4 Cash-Karp Method 

In numerical analysis, the Runge-Kutta-Cash–Karp method (RKCK) is a method for solving ordinary differential 

equations (ODEs) (17).  The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses 

six function evaluations to calculate fourth- and fifth-order accurate solutions. The difference between these solutions is 

then taken to be the error of the (fourth order) solution. This error estimate is very convenient for adaptive 
stepsize integration algorithms. Other similar integration methods are Fehlberg (RKF) and Dormand–Prince (RKDP). 

Cash and Karp have modified Fehlberg's original idea. The extended tableau for the Cash–Karp method is: 
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0 

 
1/5 1/5 

 
3/10 3/40 9/40 

 
3/5 3/10 −9/10 6/5 

 
1 −11/54 5/2 −
0/27 35/27 

 
7/8 1631/55296 175/512 575/13824 44275/110592 253/4096 

 

  
37/378 0 250/621 125/594 0 512/1771 

  
2825/27648 0 18575/48384 13525/55296 277/14336 1/4 

 

(5) 

 

 

 

 

 

The first row of b coefficients at the bottom of the table gives the fifth-order accurate method, and the second row gives 

the fourth-order accurate method. An integral equation is an equation in which the function to be determined appears 

under the integral sign. If we consider linear integral equations, that is, equations in which no nonlinear functions of the 

unknown function are involved. Equation (1) can be solved numerically using various methods. In this paper  )( ntu  will 

denote the exact value of u(t) at nhttn  0 . We shall use  )(~
ntu   or nu~   to denote an approximate value of u at nt . 

However, in this paper we will define fifth order numerical methods for (1). Since the integral cannot be determined 

explicitly, it may be approximated using familiar numerical integration methods. The Newton-Cotes integration 

formulas, which include the trapezoidal rule and Simpson’s 1/3, are well suited here since they use nodes which were 

given in [8] and [1].  

     Since the integral cannot be determined explicitly, it may be approximated using familiar numerical integration 

methods. The Newton-Cotes integration formulae, which include the 2-point closed Newton-Cotes formula is called the 

trapezoidal rule, the 3-point rule is known as Simpson’s 1/3 rule, the 4-point closed rule is Simpson’s 3/8 rule, the 5-
point closed rule is Boole’s rule (Bode’s rule), Weddle’s rule, higher rules include the 6-point, 7-point and 8-point are 

well suited here since they use nodes which were given in [1, 7, 13,18] and [3, 8].  

 

4. THE NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATIONS 

In general formulae for numerical solution of integro-differential equations rely upon formulae for the underlying ODE 

(Ordinary Differential Equation), combined with auxiliary quadrature rules approximation of 
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Stepping from nu~  with step-size h to obtain 1
~

nu , the RK4 method as applied to this problem (1) in [7, 18]. The fifth-

order Runge-Kutta-Fehlberg and sixth order Runge-Kutta-Verner methods [3] may be used but not readily, since the 

intranodal evaluation points are uniformly spaced. Consequently, the integrals needed during the intermediate 

calculations to step from nt  to 1nt  may require the trapezoidal rule or Lagrange polynomial interpolating integration on 

a non-uniform partition ].,[ 1nn tt  Any Runge-Kutta method is uniquely identified by its Butcher Tableau in (5). The 

embedded pair proposed by Fehlberg [16].   

The Runge-Kutta-Cash-Karp Method (denoted RKCK) is one way to try to resolve this problem. It has a procedure to 

determine if the proper step size h is being used. At each step, two different approximations for the solution are made and 

compared. If the two answers are in close agreement, the approximation is accepted. If the two answers do not agree to 

specified accuracy, the step size is reduced. If the answers agree to more significant digits than required, the step size is 

increased. Each step requires the use of the following six values. The Runge-Kutta-Cash-Karp can also be adapted to the 

numerical solution of (1). Stepping from nu~  with step-size h to obtain 1
~

nu , the RKCK method as applied to this 

problem may be written as: 
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Then an approximation to the solution of the equation (1) is made using a Runge-Kutta method of order 4: 
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where the four function values 431 ,, kkk and 5k  are used. A better value for the solution is determined using 

a Runge-Kutta Method of order 5: 
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In this example, the trapezoidal rule is used to approximate dssustktz
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],,[ 5/3nn tt ],,[ 1nn tt ],[ 8/7nn tt in calculating, 2k , 3k , 4k , 5k and 6k  respectively. If desired, the trapezoidal rule may 

be used on ],[ 0 ntt  (gives second order accuracy); the trapezoidal rule and Simpson’s 1/3 rule (giving third order 

accuracy, see [7, 8]) may be used on ].,[ 0 ntt  

   In order to get fifth order accuracy the integral term must be evaluated more accurately on ],,[ 5/1nn tt    

],,[ 10/3nn tt
 

],,[ 5/3nn tt
 

],,[ 1nn tt   ],[ 8/7nn tt  in calculating, 2k , 3k , 4k , 5k and 6k , as shown in (10)-(14)  below. 

The 5-point extended closed rule is Boole's method may be devised on ],[ 0 ntt   as following: 
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z(1)=0 

    u(1)=u0 

If n=1 

z(n+1)= z(n) + h( u(n) + u(n+1) ) /2 

elseif n==2 

z(n+1)= z(n-1) + h( u(n-1) +4 u(n) + u(n+1) ) /3 

elseif n==3 

z(n+1)= z(n-2) +3h ( u(n-2) +3 u(n-1) +3u(n) + u(n+1) ) / 8 

elseif n==4 

z(n+1)= z(n-3) +2h (7 u(n-3) +32 u(n-2) +12u(n-1) + 32 u(n) +7 u(n+1) ) / 45 

elseif n==5 

z(n+1)= z(n-4) +5h (19 u(n-4) +75 u(n-3) +50 u(n-2)+50 u(n-1) + 75 u(n) +19 u(n+1) ) / 288 

elseif n==6 

z(n+1)= z(n-5) + h (41u(n-5)+ 216 u(n-4) +27 u(n-3) +272 u(n-2)+27 u(n-1) + 216 u(n) +41 u(n+1) ) / 140 

elseif n==7 

z(n+1)= z(n-6) + 7h (751u(n-6)+3577u(n-5)+ 1323 u(n-4) +2989 u(n-3) +2989 u(n-2)+1323 u(n-1) +… 

   3577 u(n) +7511 u(n+1) ) / 17280 

elseif n==8 

z(n+1)= z(n-3) + 2h (7 u(n-3) +32 u(n-2) +12u(n-1) + 32 u(n) +7 u(n+1) ) / 45 

elseif mod(n,4)==0 

z(n+1)= z(n-3) + 2h (7 u(n-3) +32 u(n-2) +12u(n-1) + 32 u(n) +7 u(n+1) ) / 45 

elseif mod(n,4)==1 

z(n+1)= z(n-3) + 2h (7 u(n-3) +32 u(n-2) +12u(n-1) + 32 u(n) +7 u(n+1) ) / 45 

elseif mod(n,4)==2 

z(n+1)= z(n-3) + 2h (7 u(n-3) +32 u(n-2) +12u(n-1) + 32 u(n) +7 u(n+1) ) / 45 

elseif mod(n,4)==3 

z(n+1)= z(n-3) + 2h (7 u(n-3) +32 u(n-2) +12u(n-1) + 32 u(n) +7 u(n+1) ) / 45 

else 

z(n+1)= z(n-3) + 2h (7 u(n-3) +32 u(n-2) +12u(n-1) + 32 u(n) +7 u(n+1) ) / 45 

 If we interpolating on 5/112
~,~,~,~

 nnnn uuuu   (special formulae required for the first two steps, for example 

we can use (5) and (6)) Lagrange’s formula for points t=-2, -1, 0, 1/5 gives 
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If we integrate the expression between 0 and h/5, we get 
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Similarly, we can find t= t=-2, -1, 0, 3/10 
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and find t= t=-2, -1, 0, 3/5 
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and find t= t=-2, -1, 0, 1 
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and finally find t= t=-2, -1, 0, 7/8 
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when n<3 the first two approximations can be found by formula (7). Therefore the Runge-Kutta-Crash-Karp 
formulae become (for starting values, we can use (16) and (17)).           
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to estimate the local error in  a  Runge-Kutta Method of order four given by    

(16) 
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 In (17), this technique consistent of using the RKCK Method with local truncation error of order five,           
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We can construct an algorithm similar to the sixth, seventh, eighth and tenth-order Runge-Kutta formulae and we 

can repeat Example 3.1 using this new method. Table 3 shows the fifth-order accuracy obtained with this 

formula. 

 

Example 3.1: Consider a first order Linear Volterra integro-differential equation of the form 

(18)              .)(;0,)()()(' 00
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Equation (18) can be solved analytically with Laplace Transform using symbolic programming. In (18): 

Case (i):  If we choose 0,1,0,0   , we obtain )(tu  = 0u cos(t). 

Case (ii):  If we choose 0,1,0,1   , we obtain )(tu  = 0u cos(t) + sin(t). 

Case (iii):  If we choose 0,1,0,1   , we obtain )(tu  = 0u cosh(t) + sinh(t). 

Case (iv):  If we choose 1,1,0,0   , we obtain .
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The errors found are given Table 1, Table 2 and Table 3, where error=|true value – approximate value|. 

Unless otherwise indicated, in this paper, error means absolute error.  

 

Table 1:  Errors in the Solutions (18) for the third-order Runge-Kutta method 

0,1,0,0   1,0,0 max00  ttu ) gives )( 3hO . 

 

 h=0.0250 h=0.0125 h=0.00625 

t Errror1 Errror2 Errror3 

0.1 5.3647e-09 7.4154e-10 9.7125e-11 

0.2 2.3628e-08 3.0936e-09 3.9545e-10 

0.3 5.4434e-08 7.0098e-09 8.8905e-10 

0.4 9.7172e-08 1.2412e-08 1.5680e-09 

0.5 1.5099e-07 1.9191e-08 2.4187e-09 

0.6 2.1480e-07 2.7211e-08 3.4239e-09 

0.7 2.8730e-07 3.6307e-08 4.5629e-09 

0.8 3.6701e-07 4.6291e-08 5.8122e-09 

0.9 4.5224e-07 5.6953e-08 7.1454e-09 

1.0 5.4120e-07 6.8067e-08 8.5342e-09 

 

Table 1 is consistent with the property that the order of the error is )( 3hO . 
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Table 2: Errors in the Solutions (18) for the fourth order RK 3/8-rule 

( 0,1,1   , 1,0,0 max00  ttu ) gives )( 4hO . 

 h=0.0250 h=0.0125 h=0.00625 

t Error1 Error 2 Error3 

0.1 7.3484e-10 3.3686e-11 1.7235e-12 

0.2 1.0657e-09 5.4461e-11 3.0259e-12 

0.3 1.3753e-09 7.4015e-11 4.2551e-12 

0.4 1.6552e-09 9.1811e-11 5.3775e-12 

0.5 1.8973e-09 1.0734e-10 6.3615e-12 

0.6 2.0941e-09 1.2014e-10 7.1770e-12 

0.7 2.2388e-09 1.2976e-10 7.7981e-12 

0.8 2.3255e-09 1.3585e-10 8.2002e-12 

0.9 2.3491e-09 1.3808e-10 8.3635e-12 

1.0 2.3057e-09 1.3619e-10 8.2722e-12 

Table 2 is consistent with the property that the order of the error is )( 3hO . 

Table 3:  Errors in the Solutions (18) for RKCK Method  

A: ( 0,1,0,0   1,0,0 max00  ttu ) gives )( 4hO . 

B: ( 0,1,0,1   1,0,0 max00  ttu ) gives )( 5hO . 

t Error1 with h=0.0125 Error2 with h=0.00625 Error3 with h=0.003125 

 Method A Method B Method A Method B Method A Method B 

0.1 3.0410e-09 2.4070e-11 1.8994e-10 7.5163e-13 1.1867e-11 2.3495e-14 

0.2 3.0009e-09 2.3731e-11 1.8726e-10 7.4032e-13 1.1694e-11 2.3120e-14 

0.3 2.9309e-09 2.3138e-11 1.8271e-10 7.2098e-13 1.1404e-11 2.2538e-14 

0.4 2.8315e-09 2.2297e-11 1.7634e-10 6.9394e-13 1.1001e-11 2.1705e-14 

0.5 2.7039e-09 2.1216e-11 1.6820e-10 6.5947e-13 1.0487e-11 2.0706e-14 

0.6 2.5492e-09 1.9907e-11 1.5839e-10 6.1784e-13 9.8699e-12 1.9207e-14 

0.7 2.3691e-09 1.8384e-11 1.4699e-10 5.6954e-13 9.1529e-12 1.7542e-14 

0.8 2.1654e-09 1.6663e-11 1.3412e-10 5.1537e-13 8.3447e-12 1.5987e-14 

0.9 1.9400e-09 1.4764e-11 1.1992e-10 4.5552e-13 7.4529e-12 1.3878e-14 

1.0 1.6952e-09 1.2706e-11 1.0451e-10 3.9080e-13 6.4864e-12 1.1768e-14 

Table 3 is consistent with the property that the order of the errors are  )( 4hO   and )( 5hO . 

4. CONCLUSION 

In this paper, some numerical methods for the solution of linear Volterra integro-differential equation have been 

developed. Runge-Kutta method is good choice to get more accurate and more efficient solutions for solving the 

specified linear Volterra integro-differential equation. The approximated solution converges faster to exact solution 

and the order of classical Runge Kutta method is five. 

In fact, after this numerical calculation we were expecting order of )( 5hO . In view, it seems to be true because of the 

truncation error for the fifth order Runge-Kutta-Crash-Karp (RKCK) and Boole’s rule is )( 5hO . Thus, we found the 

expected )( 5hO . Numerical order of convergence is also calculated: 

 

)2ln(

)ln()ln( 21 ErrorError
Ord


 . 

We expected that Ord=5. Obtained theoretical results are confirmed by numerical experiments. 
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