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_________________________________________________________________________________ 

ABSTRACT—This paper propose and analyze the two-level stabilized finite element method for the stationary 

Navier-Stokes equations based on Newon iteration. This algorithm involves solving one small, nonlinear coarse mesh 

with mesh size H and two linear problems on the fine mesh with mesh size h. Based on local Gauss integration and 

the quadratic equal-order triangular element ,the two-level stabilized method our study provide an approximate 

solution ( ),h hu p with convergence rate of same order as the approximate solution ( ),h hu p  of  one-level method,which 

involves solving one large Navier-Stokes problem on a fine mesh with mesh size h. Hence,our method can save a large 

amount of computational time. Finally,some numerical tests confirm the theoretical expectations. 
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1. INTRODUCTION 

The Navier-Stokes equations are very important because they describe the physics of many things of academic and 

economic interest. These equations in their full and simplified forms help with the design of aircraft and cars, the study of 

blood flow, the design of power stations. the analysis of pollution, and many other things. In the various of works of 

studying Navier-Stokes equations, the mixed finite element method has been the subject of a very intense research 

activity over the past 30 years. 

Recently,Xu [1,2] proposes a general two-grid method on nonlinear problems. This method makes the coarse mesh 

extremely coarse (in contrast to fine mesh ) which still maintains the optimal approximation. This means that solving a 

nonlinear equation (include the N-S equations) is not much more difficult than solving one linear equation, and the work 

for solving a nonlinear problem on coarse mesh is relatively negligible. 

Moreover, Dai and Cheng [7] simple state the general two-grid method as follows: first they solve one small, 

nonlinear system on a coarse mesh, then solve one linearized problem on fine mesh based on Newton's method and at last 

solve one linear correction problem on the coarse mesh. 

 In works of Xu [1,2],Dai and Cheng [7],the mixed finite element methods all satisfy the inf-sup condition.However 

,due to computational convenience and efficiency in practice, some mixed finite element pairs which do not satisfy the 

inf-sup condition are also popular. Recent studies have focused on stabilization of the lowest equal-order finite element 

pair 
1 1

P P  (linear function) or 1 1Q Q (bilinear function) using the projection  of   the pressure on the piecewise constant 

space [6,12]. This stabilization technique is free of stabilization parameters and does not require any calculation of high-

order derivatives or edge-based data structures. Therefore, this method is gaining more and more popularity in 

computational fluid dynamics. 

The method we study in this paper mainly concentrates on a two-level stabilized  method based on Newton iteration 

for the stationary Navier-Stokes equations, which uses the conforming piecewise quadratic polynomial approximations 

for the velocity and pressure based on local Gauss integration, the present pair is shown to be more computationally 

efficient without a loss of accuracy. Hence, this paper complements the results in Dai and Cheng [7]. 

The outline of this paper is organized as follows: In Section 2,we introduce the notations, an abstract functional 

setting of the Navier-Stokes problem and some well-known results used throughout this paper. A quadratic equal-order 

stabilized method is proposed in Section 3.Moreover,two-level stabilized  method based on Newton iteration is given in 
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Section 4. In Section 5,we use some numerical experiments to verify the result of theoretical analysis. Finally, we end 

with a short conclusion in Section 6. 

2. PRELIMINARIES  

In this paper,we consider the equilibrium,incompressible Navier-Stokes equations: 

( ) ,u u u p f              in                                                                  (1) 

div u=0           in                                                           (2) 

u=0          on                                                                 (3) 

0pdx


          in                                                           (4) 

which models a steady flow of the incompressible viscous Newtonian fluid in a bounded domain. Here,   be a 

bounded convex and open subset of nR  with a Lipschitz continuous boundary  .We define that 1 2( , )u u u  and p  are 

the velocity and pressure,respectively. 0  is the viscosity and f is the body force per unit mass. 

Next,we introduce the following Hilbert spaces 

1 2

0( ( ))X H   2 2( ( ))Y L    2{ ( ) : 0}M q L qdx


        

The space of 2 ( )L  is equipped with the 2L -scalar product    ( , )  and 2
L -norm

0
 .The space 1

0( )H  and X are endowed 

with their usual scalar product ( , )u v  and norm 0u‖ ‖ ,respectively. Also, we denote by · qL
‖‖  the norm on space ( )qL   or 

2( ( ))qL  with1 q  . 

Assumption 1. For a given 2( )dg L   and Stokes problem  

v q g                     in    

                              0divv                    in    

                                  0v                   on   

we assume that ( , )v q satisfies the following result:   

2 1 0
v q c g   

where c is a positive constant and depend only on  . c will denote a positive constant which stand for different value at 

its different occurrences. 

  We define the continuous bilinear forms ( , )a u v and ( , )d u v  respectively by 

( , ) ( , )a u v u v                                 ,u v X   

and 

( , ) ( , )d v p divv p                          ,v X p M    

Meanwhile,we define the trilinear form 

( , , )b u v w =
1

(( ) , ) (( ) , )
2

u v w divu v w   

              =
1 1

(( ) , ) (( ) , )
2 2

u v w u w v         u,v,w X   

It is well known that ( , , )b     satisfies the following properties 

( , , ) ( , , )b u v w b u w v                                  u,v,w X                                                           (5) 

0 0 0
( , , )b u v w N u v w                        u,v,w X                                                            (6) 

where 

0 , ,
0 0 0

| ( , , ) |
sup
u v w X

b u v w
N

u v w 


  
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is a positive constant depending only on the domain  . 

We define a generalized bilinear form on ( ) ( )X M X M   by 

(( , );( , )) ( , ) ( , ) ( , )B u p v q a u v d v p d u q     ( , ),( , )u p v q X M    

Then, the variational formulation of problem (1)-(4) as follow: find a pair ( , ) ( , )u p X M  such that for all ( , )v q X M   

(( , ),( , )) ( , , ) ( , )B u p v q b u u v f v                                                                                                       (7) 

Meanwhile, we remark that ( , , )B     and ( , , )b     satisfy the following important properties[8] 

0 0 0 0
(( , ),( , )) ( )( )B u p v q C u p v q    ∣ ∣  ( , ),( , )u p v q X M    

0 0 0
( , )

0 0

| (( , ),( , )) |
sup ( )

v q X M

b u p v q
u p

v q
 

 

  
 

 ( , )u p X M    

                                                                             

where 0  is a positive constant and depends only on  . 

The following existence and uniqueness of solution of (7) are classical results [4,6,8]. 

Theorem 2.1  Let 'f X ,and  satisfy the following condition  

2

1
N f


  

where 

                         
1

0

( , )
sup
v X

f v
f

v





 

Then the solution of (7) is uniqueness and satisfies the following property: 

1

0 1
u f 


   

 

3. A QUADRATIC EQUAL-ORDER STABILIZED METHOD  

From now on, H is a real positive parameter tending to 0. Also, HK  is a uniformly regular partition of   into 

triangles with diameters bounded by the mesh size H, assumed to be uniformly regular in the usual sense. The finite 

element subspace H HX M  of X M  is characterized by HK .  Meanwhile, the fine partition hK  can be thought of  as 

generated from HK  by a mesh refinement process. Also, we introduce finite element space h hX M  based on hK .We 

shall assume them nested since it will simplify our analysis substantially ,i.e. H H h hX M X M X M     .Furthermore, 

let K  be a finite element partition with mesh size  .Here, h   or H  and H h . 

Then we define 
0 2 2

2{ ( ) : | ( ) , }kX u C X u P K K K         
0 2

2{ ( ) : | ( ), }kM q C M q P K K K         

where 2( )P K  represents the space of quadratic polynomials on the set K. Note that this equal-order pair X M   does 

not satisfy the discrete inf-sup condition [9]: 

0

0

( , )
sup

v X

d v q
q

v 

 











             q M    

where the constant 0  is independent of  .In order to fulfill this condition,a stabilized bilinear term[10,15,16] is used: 

(( , ),( , )) (( , ),( , )) ( , )B u p v q B u p v q G p q       
     

 
where ( , )G p q   can be defined by 

( , ) ( , )G p q p p q q             

and  is an 2L -projection operator, which is defined by 

( , ) ( , ),             2( ),L R       



Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 516X) 

Volume 01– Issue 04, December 2013  

Asian Online Journals (www.ajouronline.com)  116 

 

Here 2( )R L   denote the piecewise constant space associated with triangulation K .The following properties of the 

projection operator   can be found [6,14,17] 

00
p c p  ,            2( )p L                                                                                 (8) 

10
p p c p   ,     1( )p H                                                                                           (9) 

 

Then,we consider the finite element approximation of problem (7) is to find a pair ( , )u p X M      such that 

 

(( , ),( , )) ( , , ) ( , )B u p v q b u u v f v        ,   ( , )v q X M                                                               (10) 

where 
(( , ),( , )) ( , ) ( , ) ( , ) ( , )B u p v q a u v d v p d u q G p q          

 
is a bilinear form defined on { } { }X M X M      . 

 
Theorem 3.1.[6,16,17] The bilinear form (( , )( , ))B     satisfies the continuous property 

0 00 0
(( , ),( , )) ( )( )B u p v q c u p v q          ( , ),( , )u p v q X M       

and the coercive property 

0 0
0 ( , )

0 0

| ( , ),( , ) |
sup ( )

v q X M

B u p v q
u p

v q 

  

  
  

 


▽
▽

 ( , )u p X M       

                                                            
As in [6,11,16],we have the following results: 

 

Theorem 3.2. Assume that Assumption 1 and the uniqueness condition are valid. Let the exact solution  ,u p  be in 
3 2 2( ( ) ) ( )H X H M     .Then, ( , )u p   of problem (10) satisfies the following stability and error estimate: 

10
u f


                                                                                                                  (11) 

3

10 0 0
( ( ) )u u u u p p f                                                                                  (12) 

 

4. TWO-LEVEL STABILIZED FINITE ELEMENT METHOD  

 

As in [4,14],we define  

(( , );( , )) (( , );( , )) ( , ),B u p v q B u p v q G p q          ( , )v q X M       

and introduce the projection operators ( , )R Q  : X M X M     through 

(( ( , ), ( , ));( , )) (( , );( , ))B R v q Q v q v q B v q v q                    ( , )v q X M                                             (13) 

which is well defined and satisfies the following approximation property (see [4,14]):                                
3

10 0 0
( , ) ( ( ( , ) ) ( , ) )R u p u R u p u Q u p p f                                                                    (14) 

for all 3 2 2( , ) ( ( ) ) ( )u p H X H M       

 
Algorithm 4.1. 

 
Step 1. Solve nonlinear system on coarse mesh, i.e., find ( , )H H H Hu p X M   such that for all ( , ) H Hv q X M   

(( , );( , )) ( ; ; ) ( , )H H H H HB u p v q b u u v f v                                                                                     (15) 

Step 2. Solve nonlinear system on fine mesh with one Newton iteration, i.e., find * *( , )h h h hu p X M  such 

 that for all ( , ) h hv q X M   
* * * *(( , );( , )) ( ; , ) ( ; , ) ( , ) ( ; , )h h h H h h H H HB u p v q b u u v b u u v f v b u u v                                                         (16) 

Step 3. Update on fine mesh based on Newton iteration, i.e., find ( , )h h h hu p X M   such that for all ( , ) h hv q X M   
* * *(( , );( , )) ( ; , ) ( ; , ) ( , ) ( ; , ) ( ; , )h h h h

h H H H h h H hB u p v q b u u v b u u v f v b u u v b u u u v                                      (17) 
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Theorem 4.1.  Under the assumptions of Theorem 3.2, hu  and *

hu  defined by Algorithm 4.1,satisfy 
2* 1 1 1 2

1 1 1 10
( ) ( )hu N f N f N f f      

   
      

and 
2

1 1 1 * *

1 1 10 0 0
( ) ( )h

h hu N f f N f u N u    

  
        

Proof. Taking * *( , ) ( , )h hv q u p  in (16) and using (6),(11), we obtain that 
2* 1

0 0 10

21 1 2

1 1 1

( ) ( )

( ) ( )

h H Hu N u N u f

N f N f f



  





  

  

     

  
 

Meanwhile,setting ( , ) ( , )h hv q u p in (17) and applying (6), (11) we get that 
2

1 * *

0 0 10 0 0
( ) ( )h

H H h hu N u N u u N u f 


          

          
2

1 1 1 * *

1 1 1 0 0
( ) ( )h hN f f N f u N u    

  
       

which gives the desired result. 
 

Theorem 4.2. Let (u,p) , * *( , )h hu p , ( ),h hu p  be the solutions of (7),(16),(17), respectively. Then, under the 

 assumptions of  Theorem (3.2), we get the estimates as follows: 
2* 2 1 4 3 1 2

1 1 10
( ) (1 ) ( )hu u N f NH f h f     


      

and 
2

1 1 1 2 * * 2

1 1 10 0 0 0
( ) ( ) ( ) ( )( )h h

h hu u N Np hp N f H f u u u u f    


           

Proof. Setting *( , )h h he R u p u   , *( , )h h hQ u p p    ,subtracting (7) from (16) and using (13) ,we have 
* *(( , ),( , )) ( ; , ) ( ; , ) ( ; , ) 0h h h H h h H H HB e v q b u u u v b u u u v b u u u u v                                                          (18) 

Meanwhile,taking ( , ) ( , )h hv q e  in (18) and using (6),(11) (12),we obtain 
2*

0 0 00

21 * 2 4

1 10

( ) ( )

( )

h H h H

h

e N u u u N u u

N f u u N H f



  



       

   
 

Applying (14),we obtain that 
2* 2 1 4 3 1 2

1 1 10
( ) (1 ) ( )hu u N f NH f h f     


      

Next, setting , ( , )( ) ( , ( , ) )h h

h h h hu p u QR u p p    ,subtracting (6) from (17) and using (13),we obtain 

(( , ),( , )) ( ; , ) ( ; , )h h

h h h H Hv q b u u u v b u u uB v      * * * *; , ; , ;( ) ( ( ),) 0H h h H h hu u v u u v ub u u b u u b u u u v        (19) 

Setting ( , ) ( , )h hv q   in (19) and applying (6),(11),(12), we can get  

2
1 1 2 * *

0 1 10 0 0
( ) ( ) ( )h

h h hN f u u N H f uNu u u    


          

Using (14),we get 
2

1 1 1 2 * * 2

1 1 10 0 0
( ) ( ) ( ) ))( (h

h hu u N f H f u u u u fN N h    


          

The estimate for the 
0hp p  can be obtained from the inf-sup condition. So, we complete the proof of this theorem.  

 
Corollary 4.1. If we choose H such that 2( )h O H  for the Algorithm 4.1, then, the method we study provides an 

approximate solution ( ),h hu p with the convergence rate of same order as the one level method  solution ( ),h hu p ,which 

involves solving one large Navier-Stokes problem on a fine mesh with mesh size h. So,our method will be more effective 

and convenient .  

 

5. NUMERICAL EXPERIMENTS   

 
In this sections, we present numerical experiments to validate the theory developed in the above sections and illustrate 

the efficiency of our two-level method based on Newton iteration ,This method is characterized by using quadratic 

polynomial functions for both the velocity and pressure field. Now, the stabilized term is defined by local Gauss 

integration[6]  as follow: 
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 
,2 ,1( ) ( )( )

,( , ) ,
j jj

K Kk K

G p q p qdx p qdx p q M
  

     


            

where 
,( ) j iK

p qdx


  indicates  a local Gauss integral over ( ) jK  that is exact for polynomials of degree i (i=1,2), and 

p q  is a polynomial of degree not greater than 2.Thus,the trial function 1p P  must be projected to piecewise 

constant space, when i=1 for any 1q P  . 

Firstly,we consider an exact solution problem,Let  be the unit square in 2R .The exact solution for the velocity and 

pressure is given as follows: 
2 2

1( , ) 10 ( 1) ( 1)(2 1)u x y x x y y y     
2 2

2( , ) 10 ( 1)(2 1) ( 1)u x y x x x y y      

( , ) 10(2 1)(2 1)p x y x y    
 and the right-hand side 1 2( ( , ), ( , ))f f x y f x y is determined by original problem (1). 

Our goal is to show the prominent properties of our method as compared with the one-level  method.So we choose the 

same fixed value of h for the one-level method as the mesh spacing h in the finest grid process for the two-level method. 

In  two-level computations,h is given,so we choose H such that 2( )h O H  in Algorithm 4.1. At last ,we assume that the 

viscosity 1   in the equations of (1)-(4), and pick five value of h, i.e., 1/5, 1/10, 1/15, 1/20 and 1/25. 

 
Table1:Comparisons of the one-level with the two-level-method 

Method                      H                      h                  CPU-time          0

0

( )h 



u u

u
            0

0

hp p

p


 

One-level          ~ 1/5 0.121 1.10028E-01 2.80282E-02 

Algorithm4.1 1/2         1/5 0.032 1.09764E-01 3.10451E-02 

One-level          ~        1/10 0.302 2.77092E-02 6.56642E-02 

Algorithm4.1 1/3        1/10 0.093 2.88795E-02 7.76887E-03 

One-level          ~        1/15 0.708 1.29342E-02 3.00332E-03 

Algorithm4.1           1/4           1/15 0.291 1.29981E-02 3.46510E-03 

One-level          ~        1/20 1.252 7.27666E-03 1.03542E-03 

Algorithm4.1 1/4          1/20 0.391 7.34774E-03 1.97850E-03 

One-level          ~        1/25 2.013 4.69352E-03 7.26892E-04 

Algorithm4.1 1/5        1/25 0.625 4.70351E-03 1.28911E-03 

 
From table 1,we can find that the numerical results of one-level and two-level method just like the theoretical analysis in 

previous section. As expected, the CPU time of the two-level method is less than the one-level method under nearly the 

same relative error. Other example have been tested, and similar performance has been observed. 

 

6. CONCLUSIONS  

 

In this work we have proposed the two-level quadratic equal-order finite element method in solving the steady 

Navier-Stokes equations based on local Gauss integration. The main feature of our method is combine the quadratic 

equal-order stabilized method with two-level discretization.It includes three steps: first we solve one small, nonlinear 

system on a coarse mesh, then solve one linearized problem on fine mesh based on Newton's method and at last solve one 

linear correction problem on the coarse mesh. It is shown that the given method is stable .Moreover, we have derived the 

error estimates for the discrete stabilized finite element solution ( ),h hu p .  By above analysis, if we choose H such 

that 2( )h O H , then the two-level method we study is of the convergence rate of same order as the usual one-level 

stabilized finite element method.  At last, numerical tests for solving the Navier-Stokes equations have shown the 

better performance of our method. 
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