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Abstract. In this paper we introduce and study the concept of distinct fuzzy

subgroups commutativity degree of a finite group G. This quantity measures the

probability of tow random distinct fuzzy subgroups of G commuting. We determine

distinct fuzzy subgroup commutativity degree for some of finite groups.

1. Introduction

In 1965, Zadeh [10] first introduced fuzzy set. Mordeson et.al ([6]) called him ”a

pioneer of work on fuzzy subsets”. After that paper, several aspects of fuzzy subsets

were studied. In 1971, Rosenfled [9] introduced fuzzy sets in the realm of group theory

and formulated the concepts of fuzzy subgroups of a group. An increasing number of

properties from classical group theory have been generalized. In the last years there

has been a growing interest in the use of probability in finite group theory. One of the

most important aspects that have been studied is the probability that two elements

of a finite groups G commute. This is called the commutativity degree of G. Let G

be a group and let µ and ν be fuzzy subgroups of G. We say that µ is permuted by

ν if for any a, b ∈ G, there exists x ∈ G such that µ(x−1ab) ≥ µ(a), ν(x) ≥ ν(b) and

we say µ and ν are permutable if µ is permuted by ν and ν is permuted by µ. Also

we say that µ is permuted by ν mutually if for any subgroup L of νb that b ∈ Imν,

we have been for any a ∈ G, l ∈ L, there exist l1, l2 of L such that µ(l−1
1 al) ≥ µ(a)

and µ(lal−1
2 ) ≥ µ(a) and we say µ and ν are mutually permutable if µ is permuted

by ν mutually and ν is permuted by µ mutually. Let µ and ν be fuzzy subgroups of

G. In [8] have been determined that µ and ν are permutable(mutually permutable)
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if and if for any t ∈ Imµ, s ∈ Imν, µt, νs are permutable(mutually permutable)

which denote by ν ∈ P (µ)(ν ∈ MP (µ)). Ajmal and Thomas [1] introduced the

notion of a fuzzy quasinormal subgroup. Fuzzy quasinormal subgroup arising out of

fuzzy normal subgroup. Also in [8] have been proved that µ is a fuzzy quasinormal

subgroup of group G if and only if for every subgroup L of G, we have been that for

any a ∈ G, l ∈ L there exist l1, l2 of L such that µ(l−1
1 al) ≥ µ(a) and µ(lal−1

2 ) ≥ µ(a).

In the following, let G be a finite group and denote by F (G) the set of all fuzzy

subgroup of a group G. Let F1(G) be the set of all fuzzy subgroups µ of G such that

µ(e) = 1. In this paper, we use the natural equivalence of fuzzy subgroups studied by

Iranmanesh and Naraghi [4]. This is denoted by ∼ and the set of all the equivalence

classes ∼ on F1(G) is denoted by S(G). We consider the quantity

sd(G) =
1

|S(G)|2
|{(µ, ν) ∈ S(G)2|ν ∈ P (µ)}|

which will be called the distinct fuzzy subgroup commutativity degree of G. Clearly,

sd(G) measures the probability that two distinct fuzzy subgroups of G commute.

For an arbitrary finite group G, computing sd(G) is a difficult work, since it involves

the counting of distinct fuzzy subgroups of G. In this paper a first step in the

study of permutable fuzzy subgroups of a finite group G which in section 3 and 4

we present some basic properties and result on the permutable fuzzy subgroups of

a finite group G. In the section 5 we study some basic properties and result on the

natural equivalence of fuzzy subgroups studied by Iranmanesh and Naraghi [4]. In the

section 6 we determine the number of distinct fuzzy subgroups for some of dihedral

groups. In the final section deals with distinct fuzzy subgroup commutativity degree

for some of finite groups.
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2. Preliminaries

We use [0,1], the real unit interval as a chain the usual ordering in R which ∧

stands for infimum( or intersection) and ∨ stands for supremum ( or union) for the

degree of membership. A fuzzy subset of a set X is mapping µ :→ [0, 1]. The union

and intersection of two fuzzy subset are defined using sup and inf point wise. We

denote the set of all fuzzy subset of X by IX . Further, we denote fuzzy subsets by

the Greek letters µ, ν, η, etc. Let µ, ν ∈ IX . If µ(x) ≤ ν(x)∀x ∈ X, then we say that

µ is contained in ν ( or ν contains µ) and we write µ ⊆ ν. Let µ ∈ IX for a ∈ I,

define µa as follow:

µa = {x | x ∈ X,µ(x) ≥ a}. µa is called a-cut( or a-level) set of µ.

It is easy to verify that for any µ, ν ∈ IX :

1) µ ⊆ ν, a ∈ I ⇒ µa ⊆ νa.

2) a ≤ b, a, b ∈ I ⇒ µb ⊆ µa.

3) µ = ν ⇔ µa = νa∀a ∈ I.

Let G is an arbitrary group with a multiplicative binary operation and identity. We

define the binary operation o on IG as follow:

∀µ, ν ∈ IG, ∀x ∈ G

(µoν)(x) = ∨{µ(y) ∧ ν(z) | y, z ∈ G, yz = x}.

We call µoν the product of µ and ν. Fuzzy subset µ of G is called a fuzzy subgroup

of G if

(G1) µ(xy) ≥ µ(x) ∧ µ(y)∀x, y ∈ G;

(G2) µ(x
−1 ≥ µ(x)∀x ∈ G.

Proposition 2.1. [7, Lemma 1.2.5]. Let µ ∈ IG. Then µ is a fuzzy subgroup of G if

and only if µa is a subgroup of G, ∀a ∈ µ(G)
∪
{b ∈ I | b ≤ µ(e)}.

Theorem 2.2. [7, Theorem 1.2.9]. Let µ ∈ IG. Then µoν is a fuzzy subgroup if and

only if µoν = νoµ.
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Definition 2.3. [1]. Let µ is a fuzzy subgroup of group G, µ is said to be fuzzy

normal subgroup of G if µ(xy) = µ(yx)∀x, y ∈ G.

Definition 2.4. [2]. Let G be a group and let H and K be subgroups of G.

(a) We say that H and K are permutable if HK = KH =< H,K >.

(b) We say that H and K are mutually permutable if H permutes with every subgroup

of K and K permutes with every subgroup of H.

Definition 2.5. [2]. Let G be a group and let H be a subgroup of G, H is said to be

quasinormal in G, if H permutes whit every subgroup of G.

3. Permutable and mutually permutable on fuzzy subgroups of a

group

Definition 3.1. Let G be a group and let µ and ν be fuzzy subgroups of G.

(a) We say that µ is permuted by ν if for any a, b ∈ G, there exists x ∈ G such that

µ(x−1ab) ≥ µ(a), ν(x) ≥ ν(b).

(b) We say that µ is permuted by ν mutually if for any subgroup L of νb that b ∈ Imν,

we have been for any a ∈ G, l ∈ L, there exist l1, l2 of L such that µ(l−1
1 al) ≥ µ(a)

and µ(lal−1
2 ) ≥ µ(a).

Definition 3.2. Let G be a group and let µ and ν be fuzzy subgroups of G.

(a) We say µ and ν are permutable if µ is permuted by ν and ν is permuted by µ.

(b) We say µ and ν are mutually permutable if µ is permuted by ν mutually and ν

is permuted by µ mutually.

Corollary 3.3. Let µ and ν be fuzzy subgroups of G. If µ and ν are mutually per-

mutable then µ and ν are permutable.

Proof. Straightforward. �
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Corollary 3.4. Let µ is a fuzzy normal subgroup of G. Then µ permutes with every

fuzzy subgroup of G mutually.

Proof. Straightforward. �

Theorem 3.5. Let µ and ν be fuzzy subgroups of G, then µ and ν are permutable if

and if for any t ∈ Imµ, s ∈ Imν, µt, νs are permutable.

Proof. Let µ and ν be permutable. Let t ∈ Imµ, s ∈ Imν. If a ∈ µt and b ∈ νs

then µ(a) ≥ t, ν(b) ≥ s. We know that µ is permuted by ν. Then there that exists

x ∈ G such that µ(x−1ab) ≥ t and ν(x) ≥ s, this means that x−1ab ∈ µt and x ∈ νs.

So that ab = x(x−1ab). If a ∈ νs, b ∈ µt, then µ(b) ≥ t, ν(a) ≥ s. So that there

exists y ∈ G such that ν(y−1ab) ≥ ν(a) ≥ s and µ(y) ≥ µ(b) ≥ t, this means that

y−1ab ∈ νs and y ∈ µt. So that ab = y(y−1ab), consequently µtνs = νsµt. Now let

µtνs = νsµt, ∀t ∈ Imµ, s ∈ Imν and let a and b be two arbitrary elements of G.

Let r = µ(a), s = ν(b), then elements exist for example a′ ∈ µt, b
′ ∈ νs such that

ab = a′b′, then b′−1ab = a′, this implies µ(b′−1ab) = µ(a′) ≥ t = µ(a). Hence b′ ∈ νs,

then ν(b′) ≥ s = ν(b). Therefore µ is permuted by ν. Similarly ν is permuted by

µ. �

Proposition 3.6. Let µ and ν be fuzzy subgroups of G and t ∈ Imµ, s ∈ Imν if µ

and ν be permutable then

(1) If t ≤ s then there exists a ∈ G such that ν(a) ≥ t.

(2) If s ≤ t then there exists b ∈ G such that µ(b) ≥ s.

Proof. We know that µt, νs ̸= ∅ then there exist a and b in G such that µ(a) ≥ t and

ν(b) ≥ s. Hence µ and ν are permutable then µtνs = νsµt, then there are a′ ∈ µt

and b′ ∈ νs such that ab = a′b′. Therefore µ(aa′) ≥ min{µ(a), µ(a′)} ≥ t. Similarly

ν(bb′) ≥ s. If t ≤ s then ν(bb′) ≥ s ≥ t and if s ≤ t then µ(aa′) ≥ t ≥ s. �
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Proposition 3.7. Let µ and ν be fuzzy subgroups of G. If µ and ν be permutable

then µoν is a fuzzy subgroup of G.

Proof. Let µ and ν be permutable and x ∈ G. If y ∈ G be an arbitrary element

then there exists t ∈ G such that µ(t−1yy−1x) ≥ µ(y) and ν(t) ≥ ν(y−1x), so that

µ(y) ∧ ν(y−1x) ≤ µ(t−1x) ∧ ν(t). Therefore µ(y) ∧ ν(y−1x) ≤ supz∈G{ν(z) ∧ µ(z−1},

this means that (µoν)(x) ≤ (νoµ)(x). Similarly (νoµ)(x) ≤ (µoν)(x) because ν is

permuted by µ. �

Example 3.8. Let G be symmetric group S3. Define µ and ν as follow:

µ(x) =


1 x = e

1
2

x = b

1
3

else

, ν(x) =


1 x = e

1
2

x = ab

1
3

else

Clearly, µoν = µ, but µ is not permuted by ν.

Theorem 3.9. Let µ and ν be fuzzy subgroups of G, then µ and ν are mutually

permutable if and if for any t ∈ Imµ, s ∈ Imν, µt, νs are mutually permutable.

Proof. Let µ and ν be mutually permutable. Let a ∈ Imµ and b ∈ Imν. Also

let L ≤ νb, x ∈ µa and l ∈ L, then µ(x) ≥ a. We known that exists l1 ∈ L such

that µ(l−1
1 xl) ≥ µ(x), this means that l−1

1 xl ∈ µa, so that xl = l1(l
−1
1 xl). Therefore

µaL ⊆ Lµa and also there exists l2 ∈ L such that µ(lxl−1
2 ) ≥ µ(x) ≥ a. That is,

lxl−1
2 ∈ µa. So that lx = (lxl−1

2 )l2, therefore Lµa ⊆ µaL. So µaL is a subgroup of G.

Similarly, we know that ν is permuted by µ mutually then for any subgroup H of µa,

Hνb = νbH. So µa and νb are mutually permutable. Now let for any a ∈ Imµ and

b ∈ Imν, µa and νb be mutually permutable. Let b ∈ Imν and L ≤ νb and also x ∈ G

and l ∈ L. Let r = µ(x), so that µr and νb are mutually permutable, therefore exist

l1 ∈ L and y ∈ µr such that lx = yl1, then lxl−1
1 = y, this implies lxl−1

1 ∈ µr and

µ(lxl−1
1 ) ≥ r = µ(x). Also there exist l2 ∈ L and y′ ∈ µr such that xl = l2y

′, then
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l−1
2 xl = y′, this implies l−1

2 xl ∈ µr and µ(l−1
2 xl) ≥ µ(x). Therefore µ is permuted by

ν mutually. Similarly ν is permuted by µ mutually. �

4. Some properties of fuzzy quasinormal subgroup of a group

Definition 4.1. [5]. A fuzzy subgroup µ of G is called quasinormal if its level

subgroups are quasinormal subgroups of G.

Theorem 4.2. If µ is a fuzzy subgroup of group G, then the following properties are

equivalent:

(q1) For every subgroup L of G, we have been that for any a ∈ G, l ∈ L there exist

l1, l2 of L such that µ(l−1
1 al) ≥ µ(a) and µ(lal−1

2 ) ≥ µ(a). (q2) For any a ∈ Imµ, µa

is a quasinormal subgroup of G.

Proof. Assume firstly the validity of (q1). Let a ∈ Imµ and L ≤ G. If x ∈ µa, l ∈ L

then there exists l1 ∈ L such that µ(l−1
1 xl) ≥ µ(x) ≥ a, this means that l−1

1 xl ∈ µa.

So that xl = l1(l
−1
1 xl). Also let y ∈ µa, l

′ ∈ L, therefore there exists l2 ∈ L such

that µ(l′yl−1
2 ) ≥ µ(y). So µ(l′yl−1

2 ) ≥ a, this means that l′yl−1
2 ∈ µa, Therefore

l′y = (l′yl−1
2 )l2, consequently Lµa = µaL. Hence (q1) implies (q2). Assume next the

validity of (q2). Let L ⊆ G and x ∈ G, l ∈ L. If r = µ(x) then there exist y ∈ µr and

l1 ∈ L such that xl = l1y, so µ(l−1
1 xl) ≥ r = µ(x). Similarly there exist y′ ∈ µr, l2 ∈ L

such that ix = y′l2. Then µ(lxl−1
2 ) ≥ µ(x). Hence (q2) implies (q1). �

Corollary 4.3. Let µ be a fuzzy subgroup of G. Then µ is a fuzzy quasinormal

subgroup if and only if for every subgroup L of G, we have been that for any a ∈

G, l ∈ L there exist l1, l2 of L such that µ(l−1
1 al) ≥ µ(a) and µ(lal−1

2 ) ≥ µ(a).

Proof. Straightforward. �
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Theorem 4.4. [5, Theorem 4.3.13]. Let µ be a fuzzy subgroup of G with finite image.

Then µ is fuzzy quasinormal if and only if µoν = νoµ, for all fuzzy subgroups ν of

group G.

Corollary 4.5. Let µ be a fuzzy subgroup of G with finite image. Then µoν = νoµ,

for all fuzzy subgroups ν of group G if and only if for every subgroup L of G, we have

been that for any a ∈ G, l ∈ L there exist l1, l2 of L such that µ(l−1
1 al) ≥ µ(a) and

µ(lal−1
2 ) ≥ µ(a).

Proof. Straightforward. �

Corollary 4.6. Let µ be a fuzzy normal subgroup of group G. Then µ is fuzzy quasi-

normal subgroup of G.

Proof. Straightforward. �

Corollary 4.7. Let µ be a fuzzy quasinormal subgroup of group G. Then µ is permuted

by every fuzzy subgroup of G.

Proof. Straightforward. �

5. on the natural equivalence of fuzzy subgroups of a finite group

Whenever possible we follow the notation and terminology of [4].

The dihedral group D2n (n ≥ 2) is the symmetry group of a regular polygon with

n sides and it has the order 2n. The most convenient abstract description of D2n is

obtained by using its generators:

a rotation α of order n and a reflection β of order 2. Under these notations, we have

D2n = ⟨α, β|αn = β2 = 1, βαβ = α−1⟩.

Definition 5.1. Let G be a group and µ ∈ F (G). The set {x ∈ G|µ(x) > 0} is

called the support of µ and denoted by suppµ.
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Let G be a group and µ ∈ F (G). We shall write Imµ for the image set of µ and

Fµ for the family {µt|t ∈ Imµ}.

Theorem 5.2. [11]. Let G be a fuzzy group. If µ is a fuzzy subset of G, then

µ ∈ F (G) if and only if for all µt ∈ Fµ, µt is a subgroup of G.

Let F1(G) be the set of all fuzzy subgroups µ of G such that µ(e) = 1 and let ∼R

be an equivalence relation on F1(G). We denote the set {ν ∈ F1(G)|ν ∼
R
µ} by µ

∼
R

and the set { µ
∼

R
|µ ∈ F1(G)} by F1(G)

∼
R

.

Definition 5.3. [5]. Let G be a group, and µ, ν ∈ F (G). µ is equivalent to ν, written

as µ ∼ ν if

(1) µ(x) > µ(y) ⇔ ν(x) > ν(y) for all x, y ∈ G.

(2) µ(x) = 0 ⇔ ν(x) = 0 for all x ∈ G.

The number of the equivalence classes ∼ on F1(G) is denoted by s(G). We means

the number of distinct fuzzy subgroups of G is s(G).

Theorem 5.4. [4]. Let G be a finite group. The number of distinct fuzzy subgroups

of G such that their support is exactly equal to G is s(G)+1
2

.

Proof. Let

U(G) = { µ
∼
|µ ̸= µ∗, µ ∈ F (G), suppµ = G}

where µ∗ is a fuzzy subgroup of G and µ∗(x) = 1 for all x ∈ G.

V (G) = { µ
∼
|µ ∈ F1(G), suppµ ⊂ G}.

Since G is finite, we can define µ
∼ as follow:

µ

∼
=

(

n′
0︷ ︸︸ ︷

1 · · · 1
n′
1︷ ︸︸ ︷

λ1 · · ·λ1 · · ·
n′
r︷ ︸︸ ︷

λr · · ·λr)φ

∼
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where Imµ = {1, µ1, · · · , µr}, 1 > λ1 > · · · > λr > 0 and

φ : G0 = (e) ⊂ G1 ⊂ ... ⊂ Gn0 = µ1

⊂ Gn0+1 ⊂ · · · ⊂ Gn1 = µα1

⊂ Gn1+1 ⊂ · · · ⊂ Gn2 = µα2

...

⊂ Gn(r−1)+1 ⊂ · · · ⊂ Gnr = µαr = G

and n′
0 = n0, n

′
1 = n1 − n0 and for all i ∈ {2, · · · , r}, n′

i = ni −
i−1∑
k=1

nk.

We define the map f :

f : U(G) → V (G)

such that

f(
µ

∼
) =

(

n′
0︷ ︸︸ ︷

1 · · · 1
n′
1︷ ︸︸ ︷

λ1 · · ·λ1 · · ·
n′
r−1︷ ︸︸ ︷

λr−1 · · ·λr−1

n′
r︷ ︸︸ ︷

0 · · · 0)φ
∼

It is easy to see that f is one to one and onto. So |U(G)| = |V (G)| and s(G) =

|U(G)| + |V (G)| + 1, therefore s(G) = 2|U(G)| + 1. Thus |U(G)| = |V (G)| = s(G)−1
2

and hence |U(G)|+ 1 = s(G)+1
2

. �

Let G be a finite group. The number of distinct fuzzy subgroups of G such that

their support is exactly equal to G is denoted by s⋆(G).

Theorem 5.5. Let G be a finite group. Then the number of distinct fuzzy subgroups

of G such that their support is exactly a subgroup of G is s(G)−1
2

.

Proof. By proof of theorem 5.4, |U(G)| = |V (G)| = s(G)−1
2

. �

Theorem 5.6. [4]. Let G be a finite group and H be a subgroup of G. Then the

number of distinct fuzzy subgroups of G such that their support is exactly equal to H

is s(H)+1
2

.

Proof. We can easily see that the number of distinct fuzzy subgroups of the group G

which their supports is exactly H is equal to number of distinct fuzzy subgroups of
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H which their supports is exactly H and this number with the previous theorem is

equal to s(H)+1
2

. �

Corollary 5.7. [4]. Let G be a finite group and H be a subgroup of G. Then the

number of distinct fuzzy subgroups of G such that their support is exactly a subgroup

of H is s(H)−1
2

.

Proposition 5.8. [5]. Let n ∈ N. Then there are 2n+1−1 distinct equivalence classes

of fuzzy subgroups of Zpn .

6. Counting of the distinct fuzzy subgroups for some of finite groups

Now we determine the number of distinct fuzzy subgroups for some of the dihedral

groups.

Example 6.1. Let G be the dihedral group of order 4, then s(G) = 15.

We know that s(G)−1
2

= s⋆({1}) + 3s⋆(Z2), therefore
s(G)−1

2
= 7. Thus s(G) = 15.

Example 6.2. Let G be the dihedral group of order 8, then s(G) = 63.

We know that s(G)−1
2

= s⋆({1}) + s⋆(Z4) + 5s⋆(Z2) + 2s⋆(D4), therefore
s(G)−1

2
= 29.

Thus s(G) = 63.

Theorem 6.3. Suppose that p is a prime and p ≥ 3. If G is the dihedral group of

order 2p, then s(G) = 4p+ 7.

Proof. We know that D2p has the following maximal chains each of which can be

identified with the chain D2p ⊃ Zp ⊃ {0} and D2p ⊃ Z2 ⊃ {0} whose the number is

p. Now 2 is the number of distinct fuzzy subgroups whose support is Zp, 2
1p is the

number of distinct fuzzy subgroups whose support is Z2, and 20 is the number of fuzzy

subgroups whose support is {0}. Thus s(G)−1
2

= 2p+ 2 + 1, therefore s(G) = 4p+ 7.

Example 6.4. Let S3 = ⟨α, β|α3 = β2 = (αβ)2 = 1⟩. By Hasse diagram of S3,
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D4

Z2Z2Z2

{1}

Figure 1. Hasse diagram of D4

D8

D4Z4D4

Z2Z2  Z2Z2Z2

{1}

Figure 2. Hasse diagram of D8
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S3

〈α〉 〈β〉 〈αβ〉 〈α2β〉

{1}

1

Figure 3. Hasse diagram of S3

s(S3)− 1

2
= s⋆({1}) + s⋆(⟨α⟩) + s⋆(⟨β⟩) + s⋆(⟨αβ⟩) + s⋆(⟨α2β⟩).

Therefore s(S3) = 19.

7. Distinct fuzzy subgroup commutativity for some of dihedral

groups

Remark 7.1. We count distinct fuzzy subgroups of a finite group G on its Hasse

diagram for identity cases following:

left to right on subgroups chains increasingly.
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Let G be a finite group. First of all, remark that the distinct fuzzy subgroup

commutativity degree sd(G) satisfies the following relation:

0 < sd(G) ≤ 1.

Obviously, the equality sd(G) = 1 holds if and only if all distinct fuzzy subgroups of

G are permutable.

Next, for every fuzzy subgroup µ of G, let us denote by C(H) the set consisting of

all distinct fuzzy subgroups of G which commute with µ, that is

C(H) = {ν ∈ S(G)|ν ∈ P (µ)}.

Then

sd(G) =
1

|S(G)|2
∑

µ∈S(G)

|C(µ)|.

It is clear that the fuzzy normal subgroups of G are contained in each set C(µ)(see

[5]), which implies that

|N(G)|
|S(G)|

≤ sd(G)

such that a remarkable modular sublattice of S(G) is the distinct fuzzy normal sub-

group lattice N(G), which consists of all distinct fuzzy normal subgroups of G.

Note that we have sd(G) = |N(G)|
|S(G)| if and only if N(G) = S(G).

By 4.7, It is clear that the fuzzy quasinormal subgroups of G are contained in each

set C(µ)(see [5]), which implies that

|QN(G)|
|S(G)|

≤ sd(G)

such that a remarkable modular sublattice of S(G) is the distinct fuzzy quasinormal

subgroup lattice QN(G), which consists of all distinct fuzzy normal subgroups of G.

Note that we have sd(G) = |QN(G)|
|S(G)| if and only if QN(G) = S(G).
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S3

〈α〉

{1}

1

Figure 4. Hasse subdiagram of S3

Example 7.2. Let S3 = ⟨α, β|α3 = β2 = (αβ)2 = 1⟩.

Let A1 be the set of all distinct nontrivial fuzzy subgroups of S3 such that are

in Hasse subdiagram of S3(chain {1} ⊂ ⟨α⟩ ⊂ S3, such that its support is exactly

⟨α⟩)following: Let A2 be the set of all distinct nontrivial fuzzy subgroups of S3 on

the chain {1} ⊂ ⟨β⟩ ⊂ S3 of S3, such that its support is exactly ⟨β⟩,

A3 be the set of all distinct nontrivial fuzzy subgroups of S3 on the chain {1} ⊂

⟨αβ⟩ ⊂ S3 of S3, such that its support is exactly ⟨αβ⟩,

and A4 be the set of all distinct nontrivial fuzzy subgroups of S3 on the chain {1} ⊂

⟨α2β⟩ ⊂ S3 of S3, such that its support is exactly ⟨α2β⟩.

Thus |A1| = |A2| = |A3| = |A4| = 1.(For details see [5]). It is clear that for every two

subgroups H and K of S3, their product HK = {hk|h ∈ H, k ∈ K} is a subgroup in
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S3 except ⟨β⟩⟨αβ⟩, ⟨β⟩⟨α2β⟩, ⟨αβ⟩⟨β⟩, ⟨αβ⟩⟨α2β⟩, ⟨α2β⟩⟨β⟩ and ⟨α2β⟩⟨αβ⟩. If µ be

a fuzzy subgroup of S3 such that its support is exactly equal to ⟨β⟩ and ν be a fuzzy

subgroup of S3 such that its support is exactly equal to ⟨αβ⟩ or ⟨α2β⟩ then µ and ν

are not permutable. If µ be a fuzzy subgroup of S3 such that its support is exactly

equal to ⟨αβ⟩ and ν be a fuzzy subgroup of S3 such that its support is exactly equal to

⟨β⟩ or ⟨α2β⟩ then µ and ν are not permutable and if µ be a fuzzy subgroup of S3 such

that its support is exactly equal to ⟨α2β⟩ and ν be a fuzzy subgroup of S3 such that its

support is exactly equal to ⟨β⟩ or ⟨αβ⟩ then µ and ν are not permutable. Therefore

by theorem 5.6 and proposition 5.8, s⋆(⟨β⟩) = s⋆(⟨αβ⟩) = s⋆(⟨α2β⟩) = s⋆(⟨α⟩) = 2.

Thus

sd(S3) =
1

|S(S3)|2 (|A1||S(S3)|+|A2|(|A1|+|A2|+1)+|A3|(|A1|+|A3|+1)+|A4|(|A1|+

|A4|+ 1) + s⋆({1})|S(S3)|). So by example 6.4, sd(S3) =
50
361

.

Example 7.3. Let D8 = ⟨α, β|α4 = β2 = 1, βαβ = α−1⟩, it is clear that for every two

subgroups H and K of D8, their product HK = {hk|h ∈ H, k ∈ K} is a subgroup

in D8 except ⟨β⟩⟨αβ⟩, ⟨β⟩⟨α−1β⟩, ⟨α2β⟩⟨αβ⟩, ⟨α2β⟩⟨α−1β⟩, ⟨αβ⟩⟨β⟩, ⟨αβ⟩⟨α2β⟩,

⟨α−1β⟩⟨β⟩ and ⟨α−1β⟩⟨α2β⟩. If µ be a fuzzy subgroup of D8 such that its support is

exactly equal to ⟨β⟩ or ⟨α2β⟩ and ν be a fuzzy subgroup of D8 such that its support is

exactly equal to ⟨αβ⟩ or ⟨α−1β⟩ then µ and ν are not permutable. Let A1 be the set

of all distinct nontrivial fuzzy subgroups of D8 on the chain {1} ⊂ ⟨β⟩ ⊂ ⟨α2, β⟩ ⊂ D8

of D8, such that its support is exactly ⟨α2, β⟩ or ⟨β⟩,

A2 be the set of all distinct nontrivial fuzzy subgroups of D8 on the chain {1} ⊂

⟨α2β⟩ ⊂ ⟨α2, β⟩ ⊂ D8 of D8, such that its support is exactly ⟨α2, β⟩ or ⟨α2β⟩,

A3 be the set of all distinct nontrivial fuzzy subgroups of D8 on the chain {1} ⊂

⟨α2⟩ ⊂ ⟨α2, β⟩ ⊂ D8 of D8, such that its support is exactly ⟨α2, β⟩ or ⟨α2⟩,

A4 be the set of all distinct nontrivial fuzzy subgroups of D8 on the chain {1} ⊂

⟨α2⟩ ⊂ ⟨α⟩ ⊂ D8 of D8, such that its support is exactly ⟨α⟩ or ⟨α2⟩,
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A5 be the set of all distinct nontrivial fuzzy subgroups of D8 on the chain {1} ⊂

⟨α2⟩ ⊂ ⟨α2, αβ⟩ ⊂ D8 of D8, such that its support is exactly ⟨α2, αβ⟩ or ⟨α2⟩,

A6 be the set of all distinct nontrivial fuzzy subgroups of D8 on the chain {1} ⊂

⟨αβ⟩ ⊂ ⟨α2, αβ⟩ ⊂ D8 of D8, such that its support is exactly ⟨α2, αβ⟩ or ⟨αβ⟩,

and A7 be the set of all distinct nontrivial fuzzy subgroups of D8 on the chain

{1} ⊂ ⟨α−1β⟩ ⊂ ⟨α2, αβ⟩ ⊂ D8 of D8, such that its support is exactly ⟨α2, αβ⟩ or

⟨α−1β⟩.

Clearly, |A1| = |A2| = |A3| = |A5| = |A6| = |A7| = 2 + 8 − 1 = 9 and |A4| =

2 + 4− 1 = 5. (For details see [5]).

Thus by example 6.2

sd(D8) = 1
632

(|A1|(s(D8) − |A6| − |A7|) + |A2|(s(D8) − |A6| − |A7|) + |A3|s(D8) +

|A4|s(D8) + |A5|s(D8) + |A6|(s(D8) − |A1| − |A2|) + |A7|(s(D8) − |A1| − |A2|) +

s⋆({1})s(S8)).

So sd(D8) =
3897
3969

.

Proposition 7.4. suppose that p is a prime and p ≥ 3. If G is the dihedral group

of order 2p, then sd(G) = 1.

Proof. It is clear that for every two subgroups H and K of D2p, HK = {hk|h ∈

H, k ∈ K} is a subgroup in D2p. If µ be a fuzzy subgroup of D2p such that its

support is exactly equal to H and ν be a fuzzy subgroup of D2p such that its support

is exactly equal to K, then by theorem 3.5, proposition 3.7 and theorem 2.2, µ and

ν are permutable.So that sd(G) = 1. �
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