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__________________________________________________________________________________________________________ 

ABSTRACT--- The objective of this paper is to investigate and give sufficient conditions that will guarantee 

globally asymptotically stable periodic solutions of the non-linear differential equations with delay of the form 

(1.1). the Razumikhin’s technique was improve upon, to enhance better results equation (1.2) was studied along 

side with equation (1.1). Equation (1.2) is an integro-differential equations with delay kernel. The coefficients of 

(1.2) are periodic, and the equation can be rewritten as in form of (3.1), where a,b and c ≥ 0 and  -periodic 

continuous function on R.G ≥ 0, is a normalized kernel from equation (1.2). Equation (1.2) enable  us to defined 

equation (3.1) as a fixed point. Since the defined operator “B” for equation (3.1) are not empty, claim  ( 1-iv) 

enable us to use the fixed point theorem to investigate and established our defined properties. (Theorem 3.1 

Lemma 3.1 and Theorem 3.2) was used to prove for periodic and asymptotically stability and the Liapunovis 

direct (second) method was used to prove our main result. See, (Theorem 3.3, 3.4 and 3.5)  which  established the 

objective of this study. 

Keyword--- Globally Asymptotically, Stability, Periodic Solution, Delay Differential Equations 

___________________________________________________________________________________________ 

1. INTRODUCTION 

The problem of stability and boundedness of solutions has been the subject of many investigations. Many 

Research papers and books have been devoted to the study of stability of periodic solutions with delay or 

non-linear differential equations. Among others see the Literature: (1) established the necessary and 

sufficient conditions for the periodicity and stability results for solutions of a certain third order non-

linear differential equations. And on the other hand, (2) considered conditions that guarantee periodic 

solutions for differential equations with state-dependent and positive feedback. (3) Considered a system 

of delay differential equations together with a Liapunov function to established conditions that guarantees 

asymptotic stability when the delay is unbounded. (4) Use the frequency-domain technique to established 

conditions for the existence of globally exponentially stable, bounded, periodic and almost periodic for 

some certain fifth order non-linear differential equations. (6,7) derived necessary conditions for stability 

of motion of Regulated system with delay. (8) gives sufficient conditions that guarantees global 

boundedness for a delay differential equations. (10) established conditions that guarantees stability of a 

system with delay, using Liapunov direct method. 

  In this paper we study global asymptotic stability of periodic solutions with delay of the equations of the 

form. (1.1) and (1.2), and use the Liapunov’s second method and the fixed point Theorem to established 

necessary and sufficient conditions that guarantees globally asymptotically stability of periodic solutions 

with delay of a certain non-linear differential equations. My approach in this study has an advantage over 
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(6) and the results obtained in this study generalize the results in (3) in the case when the delay was 

unbounded. 

In this paper, we consider a single-species model with a general periodic delay. 
  

  
                                    1.1 

and 
  

  
      

 

 
             
 

 
      1.2 

Where a(t)  ,  b(t)   ,        and the delay       , are all continously differentiable in their 

respective argument.  -periodic function on        if this model is considered as a population model 

which size is small, growth is proportional to the size and when the population size is not so small, the 

positive feedback is                     . While the negative feedback is b(t) x(t) fixed point theorem 

and Razuminkin technique will be  use to prove the main results which guarantee the existence conditions 

for globally asymptotically stable periodic solutions of nonlinear differential equations with delay of the 

equation (1.1). Equation (1.2) is an intego-differential equations, where g(t) is called the delay kernel, is a 

weighting factor which indicates how much emphasis should be given to the size of the population at 

earlier times to determine the present effect on resource availability. The normalized delay kernel of (1.2) 

is given by          

          
 

 
if      is the Dirac function                 

               
 

 
     . and equation (1.2) reduces to      

 
  

  
         

 

 
               
 

 
          

      

 
                           

 Consider the stability of the equilibrium    = K for equation(1.2) and we let X = X – K.        

then(1.2) can be written as 
  

  
                                    

 

  

 

  
  

The linear zed equation about x = k is given by                                             

  
  

  
                

 

  
            (1.3)                                                                                                                                                             

and the characteristics equation takes the form              
 

 
                 (1.4)                                                   

If all eigen values of the characteristic equation (1.4) have negative real part, then the solution x=0 of 

(1.3) that is the equilibrium   =K of (1.2) is asymptotically stable. Suppose that                      

       

            (1.5)  

The prototype For V is the Krasovskii functional                               

      
   . Where A 

and B are     matrices. If we express the second term of V as Z          . We notice that 

 
 

  
                                                       so that if B and    are bounded 

then Z is lipschitz in t for any bounded function X.  

If the system                           Where G is continuous G:                and G takes 

bounded sets into bounded sets. equation (1.6) is uniformly asymptotically  stable 

 

2. NOTATION AND DEFINITIONS   

The initial value equation (1.2) is 

                           (2.1)  

Where      is continuous on       . an equilibrium     of (1.2) is called stable if given any     

there exist a           such that             for t         implies that any solution      of 
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(1.2) and (2.1)exist and satisfies              for all t  . If in addition there exists a constant     

such that                         implies               then    is called asymptotically stable  

      

Stability           

Definition 1:  The origin is said to be stable in the sense of Lyapunov or simply stable if for every real 

number     and initial time      there exists a real number     depending on   and in general on t 

such that for all initial conditions satisfying the inequality        the motion satisfies         for 

all t     

 Definition 2:           

Asymptotic stability;  The origin is said to be asymptotically stable if it is stable and every motion 

starting sufficiently close to the origin converges to the origin as t tends to infinity. i.e.              

          

Definition 3:          

 Globally asymptotically stable: the origin is said to be globally asymptotically stable in the large 

if in every motion starting at any point in the state space, returns to the origin at t tends to infinity.  

    

Definition 4:                                       

 the equilibrium state     is called exponentially stable if there exist three positive number 

          such that                 
         hold for every perturbed motion with            

         

3. PRELIMINARY NOTES 

If the coefficients of equation (1.2) are periodic, it can be re-written in the form of   
  

  
           

                          
 

  
  (3.1). 

Where               are  -periodic continuous  functions on R and     is a normalized kernel. 

let           denote the branch space of all  -periodic continuous `functions endowed with the usual 

supreme norm               for  a       define the average of a as     
 

 
       
 

 
  and a bounded 

funtion f is defined by                       
 

  
 note that the  -periodic solution of (3.1) is a 

fixed point of the operator B:     define by                    

Where   =                        since (a)          belongs to  . That is   is not empty.  

Define                        

Calm I.  If     and     belong to   with         then         

In fact. Let                                                  

          Then              Since                               

we have          because              are periodic. Thus, we deduce 

                                             

Setting                   we have  

                                    

Which implies that                     by the Periodicity of       we have        . 

Claim II.  If V and c belong to     then                   

In fact, if we define        for      we have  

           
      

  
ds    
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=       
 

 
  
                    

      

   
 

=         . 

Claim III.  Let z be a bounded continuous function on R. Then 

 
       
   

         
        
   

 
       
   

          
       
   

      

We only prove the first inequality. Let   
       
   

      Choose      and pick     such that          

for any       If       we have                                            
 

  

  

  
 

                         
  

  

         
 

  

 

Hence 
       
   

              

Which implies the first inequality. 

Claim IV. Let     and let        be the solution of (3.1). Then  

   
   

                           
   

                   

   
   

                           
   

                   

We prove the first statement. Let                .  

Then       is a solution of                                          

While                                            

Define                                          (t) (G*(v-u) (t) 

               –                                       –          

Let                           Because of claim III, there exist        , such that       

                                        for all         that is 

                      
 

  
  

 

 
     
 

  
               

where                       Because            is periodic and its average is zero,          is 

positive and bounded, we can see that         
 

  
        Where         are constants. 

Thus                             
 

  
                   

Where                                                      which implies the first statement. 

Below Theorems we a give sufficient conditions to the proof of the main Results.  

Theorem 3.0 Let            and assume a Lyapunov function       exists, for which 

                    Then the solution        of equation (1.1) is stable in the sense of Lyapunov. 

Theorem 3.1 Suppose                        (3.2), for and          then equation (3.1) has a 

unique positive    periodic solution       which is globally asymptotically stable with respect to all the 

solutions of equation (3.1) under initial condition                     . 

˙ 

˙ 
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Lemma 3.1 Let the function g:           be continuous for some                        

  for all values         for which                        Then             

                     

Theorem 3.2 If         
 

 
 

 

 
 

then          (1.2) is asymptotically stable 

Theorem 3.3. Assume the Lyapunov function       exists with                  imply       

               Then the solution        of equation (1.1) is stable. 

Theorem 3.4; Assume, in addition to the conditions of theorem 3.3, that for any sufficiently small      

there exist     such that, if                then                      

Then the solution        of equation (1.1) is asymptotically stable. 

Theorem 3.5; Let                        be continuous and let V be totally lipschitz in the 

second argument. Suppose that                          for some      all          satisfying 

             and all       if                   

                                           and   
                       then     is 

uniformly asymptotically stable of (1.6). 

 

4. THE PROOFS OF THE MAIN RESULTS 

Proof of Theorem 3.1 

Since                              the periodicity of       and claim II imply that           

           As       we have         therefore, for any      satisfying         we have 

           Hence, the set                    is invariant under B. moreover, 

                     
     

         
  

And by induction 

                      
                              

Since     
       by claim I,  we know that           is increasing and         is decreasing. 

Define 

                            

Then  

         
   

            
        

   
      

Exist with                If we can show that               

        it is easy to see that       is the unique fixed point of B. by the definition, we have, 

                                            

By the Monotonicity and uniform boundedness of       We have the     convergence of both      and 

    and their derivatives. 

Taking the limits, we have 

                                           

                                            

Dividing them by                respectively, we have  

                                

followed by the fact that Inu
+
 and Inu

– 
 are periodic. Let V(t) =    (t) –         Then we have 

{C(G*V)} = (bV). Now by claim II we have {C(G*V)} = { V{G*C)}.  

Hence, {V(b – G*C)} = 0, which implies that V = 0 by the assumption (3.2)
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Therefore, U* (t) is a unique periodic solution of the equation (3.1) 

To prove the global stability, first, we show that any solution v(t) of equation (3.1) satisfies         

          In fact, we have 

            

    (t) <a(t) v(t) – b (t) v (t)
2
 

and   
   

    
 sup(v(t) – (Bu) (t)) < 0 

   

Choose            so that u(t) = Uo(t) +          .   By claim IV we have  

   
       
    

 (v(t) – (Bu) (t)) >  . 

Since (Bu)(t) is strictly positive and periodic, we have lim inf t   v(t) > 0. Thus by claim III, lim inft 

     (Uolt) – V(t)) > 0 and by iniluction.  

       
    

 v(t) – (B
2n + 1

 Uo) (t) > 0, 
    

    
 Sup(v(t) – (   Uo)(t)  ¸0  

Given    >  0, choose n such that  

U
*
 (t) -   < (B

2n + 1
 uo) (t) < (B

2n
Uo)(t) < U* (t) +  .  

Since (B
2n + 1

uo)(t) < v(t) < (B
2n

uo) (t) for large t, it follows that the sequence {B
j
u) tends to u* uniformly 

as j   .  

This complete the proof.  

If a, b and c are real positive constants, then condition (3.1) becomes b > c.  

Corollary 4.1.    If b > c and g satisfies the above assumptions, then the positive equilibrium x* = a/(b + 

c) of equation (3.1) (with constant coefficient) is globally stable with respect to positive solutions of (3.1).  

 

Proof of Theorem 3.2 

Proof. Since the roots of (1.4) coincide with the 

zeros                                
 

 
               

                                                                  (a,  ) that constitutes the 

boundary of the region  

{  /  < Re   a, - a < lm < a, 0 <   a}.  

Since the zeros of g ( ) are isolated, me may choose a and  . So that no zeros of g ( ) lie on  .  The 

argument principle now states that the number of zeros of g ( ) contained in the region bounded by   is 

equal to the number of times g ( ) wraps   around the origin as   traverses  .  (A zero of g ( ) of 

multiplicity m is counted m times).  Thus, it suffices to show for all small          and all large a > r, that 

g ( ) does not on circle 0 as    traverses    (a,  ).  

 Along the segment of    given by    = a + iv, - a <   < a,  

we have  

 g(a+iv) = a + iv + r                
 

 
   ds. 

Since a > 0, it follow that  

               
 

 
   ds.     <        

 

 
   ds = 1  

Because a > r, we may conclude that every real value assumed by  g ( ) along this segment must be 

positive. Along the segment of 

 given by   =   + ia, C< a, we have  
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g(  + ia) =   + ia + r                 
 

 
   ds. 

A similar argument show g ( ) to assume no real value along this path. In fact, lim g(  + ia) is always  

negative here. Similarly, one can show that the lim g(u-ia) is negative along 0. The segment    =    - ia, C 

<    < a. By continuity g (٨) must assume at least one positive real value (and no negative values) as ٨ 

travels clock wise from   + ia to   - ia along  .  

Finally, consider the path traced out as     =     + iv increase from   - ia to   + ia. under the assumption, 

1m g(  + iv) is seen to increase monotonically with v. in fact,  

 

  
              

 

  
                 

 

 

             

=   1 + r           
 

 
            

   1 – r       
 

 
     

    0.  

It follows immediately that g( ) assumes precisely one real value along this last segment of  . Since no 

zero of g( )   lies on  , that real value is non-zero. Assuming it to be negative, g( )  would have wrapped 

  once about the origin, predicting exactly one zero  o of g( ) inside the region bounded by  .  

Since   and G are real, the zeros of g( ) occur in complex conjugate pairs, forcing   o to be real.  

This, however, is a contradiction since the positivity of   shows g( ) to have no real positive zeros.  

Thus, the real assumed by g( ) along this last segment must be positive.  

Therefore, g( ) does not encircle the origin.  

This completes the proof.  

 

Proof of Theorem 3.3 

 For this proof, let set g(t) = v(x(t)), where x(.) is any solution of equation (1.1) with initial 

function   sufficiently close to zero, and apply lemma 3.1. We see that even a stronger statement for such 

solutions holds: v(x(t)) Max                However in general, the monotonixcity of the function 

         does not hold true, unlike the situation arising valuer conditions of Theorem 3.0. Thus the 

function v turns out to be not a guiding function in the restricted sense, but a “barrier” function.  

 It should be noted that the function     g(t), defined in the proof of Theorem 3.3, is smooth for t 

>  : = to. Lemma 3.1 follows easily under this additional assumption from the following particular case 

of A. Sard’s theorem:  a set of stationary values of a smooth function of a single argument has that 

everywhere dense complement.  

Proof of Theorem 3.4  

 Indeed, if the solution      (t) of equation (1.1) is modulo sufficiently small and does not tend to 

zero as      , then we denote P: =                                and apply the additional condition of 

Theorem 3.3 which leads to the contradiction.  

 In particular, we obtain for n = 1, taking v (x) =   , 
that the condition     < - a is sufficient for 

the asymptotic stability of equation (1.1). 

Remark:  If the function v is defined on the whole  n
 in theorem 3.4, and v(x)       as /x/      and p > 

0 can be arbitrary, then the solution of equation (1.1) tends to zero as      for arbitrary initial function.  

Proof of Theorem 3.5  

 We first show uniform stability. Let    > 0 be given.  

We will find         such that (t0   0,        , and t   t0) 
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Imply 1 x (t,   )) <   .  There exists   > o such that W1 ( ) + W2 ( )  < W( ). Thus, if         and x (t) 

= x (t,  ), then W (1x (t) 1) < V(t, xt) < V(to,  ) < w1 (1  (0) + w2 (    )     ( ) so that           

              yielding uniform stability.  

To complete the proof we must find   > 0 such that for any   > 0 there exists T for which (t0 > 0, 

   <  , and t > t0 + T) imply            <  . Pick the    of uniform stability when    = M.  select a   =   .  

Now, let   > 0 be given and let to > 0,     <  , and let x (t) = x (t,  ).  

For the given   > 0, find the   of uniform stability as in the above proof. By that proof we see that 

on each interval of length h either /x(t) / >    for some t in the interval, or / x(t) <   for all subsequent t. 

thus, let to > 0 be arbitrary and suppose there is a sequence (tn) with to <  t1 < t0 + h < t2 < t0 + 2h < t3 < … 

< t0 + (n – 1) h <    <    + nh … with / x (ti) / >  . We will show that n may not exceed a fixed integer. 

As in Theorem 3.0 without proof, we use the right Lipchitz condition on 2 to find k > 0 and P > 0 with P 

< h and / x(t) / >, K if ti – P < t < t1. We select only the t1 with even indices so that the intervals over 

which we now integrate do not overlap. For t > t2n, we have V (t, xt) < V (to,  )          

                  

   

     

 

   

                                  

>                             and select T = 2Nh.  This yields uniform asymptotic stability of equation 

(1.6). This complete the proof.  

Remark 4.1, Obviously, the authors in (2 – 10) considered existence of periodic solutions with delay of 

non linear differential equations of various order. Author in (3) considered a system of differential 

equations with delay and use Liapunov’s function to established asymptotic stability where the delay was 

unbounded. Hence, the results obtained in (2 – 10) are not the same in this paper which implies that the 

results of this paper are essentially new. Theorem 3.1, lemma 3.1, Theorem 3. And the inequality i-iv 

established the conditions for equation (1.2) to be globally asymptotically stability of periodic solutions 

with delay. And theorem 3.3,3.4 and 3.5 with Lipunov’s second method, prove properties that satisfied 

globally asymptotically stability of non-linear differential equation. 

 

5. CONCLUSION  

The globally asymptotically stability of periodic solution of a certain class of delay differential equation 

have been proved in this paper. This paper improved on the paper in Author (3) where all are properties 

satisfied the existence and unique of solutions of the form (1.1) and (1.2) that enable us established the 

stability of the periodic solutions. 
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