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ABSTRACT— In this communication we define a new generalized useful average code-word length  of 

order and type  and its relationship with new generalized useful information measure of order and 

type  has been discussed. The lower and upper bound of , in terms of are derived for a discrete 

noiseless channel. The measures defined in this communication are not only new but some well known measures are 

the particular cases of our proposed measures that already exist in the literature of useful information and coding 

theory. The noiseless coding theorems for discrete channel proved in this paper are verified by considering Huffman 

and Shannon-Fano coding schemes on taking empirical data. The important properties of  have also been 

studied. 
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1. INTRODUCTION 

The growth of telecommunication in the early twentieth century led several researchers to study the information 

control of signals, the seminal work of Shannon [17], based on papers by Nyquists [14], [15] and Hartley [7] rationalized 

these early efforts into a coherent mathematical theory of communication and initiated the area of research now known as 

information theory. The central paradigm of classical information theory is the engineering problem of the transmission 

of information over a noisy channel. The most fundamental results of this theory are Shannon's source coding theorem 

which establishes that on average the number of bits needed to represent the result of an uncertain event is given by its 

entropy; and Shannon's noisy-channel coding theorem which states that reliable communication is possible over noisy 

channels provided that the rate of communication is below a certain threshold called the channel capacity. Information 

theory is a broad and deep mathematical theory with equally broad and deep applications, amongst which is the vital field 

of coding theory. Information theory is a new branch of probability and statistics with extensive potential application to 

communication system. The term information theory does not possess a unique definition. Broadly speaking, information 

theory deals with the study of problems concerning any system. This includes information processing, information 

storage and decision making. In a narrow sense, information theory studies all theoretical problems connected with the 

transmission of information over communication channels. This includes the study of uncertainty (information) measure 

and various practical and economical methods of coding information for transmission. 

Let  be a finite discrete random variable or finite source taking values  with respective probabilities 

and  Shannon [17] gives the following measure of 

information and call it entropy. 

         (1.1) 

The measure (1.1) serves as a suitable measure of entropy. Let  be the probabilities of  code-words to 

be transmitted and let their lengths  satisfy Kraft [11] inequality, 
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           (1.2) 

For uniquely decipherable codes, Shannon [17] showed that for all codes satisfying (1.2), the lower bound of the mean 

codeword length, 

          (1.3) 

lies between  and .Where  is the size of code alphabet. Shannon’s entropy (1.1) is indeed a measure 

of uncertainty and is treated as information supplied by a probabilistic experiment. This formula gives us the measure of 

information as a function of the probabilities only in which various events occur without considering the effectiveness or 

importance of the events. Belis and Guiasu [1] remarked that a source is not completely specified by the probability 

distribution  over the source alphabet  in the absence of quality character. They enriched the usual description of the 

information source (i.e., a finite source alphabet and finite probability distribution) by introducing an additional 

parameter measuring the utility associated with an event according to their importance or utilities in view of the 

experimenter. 

Let  be the set of positive real numbers, where  is the utility or importance of 

outcome . The utility, in general, is independent of , i.e., the probability of encoding of source symbol . The 

information source is thus given by 

      (1.4) 

We call (1.4) a Utility Information Scheme. Belis and Guiasu [1] introduced the following quantitative- 

qualitative measure of information for this scheme. 

         (1.5) 

and call it as ‘useful’ entropy. The measure (1.5) can be taken as satisfactory measure for the average quantity of 

‘valuable’ or ‘useful’ information provided by the information source (1.4). Guiasu and Picard [5] considered the 

problem of encoding the letter output by the source (1.4) by means of a single letter prefix code whose codeword’s 

have lengths  respectively and satisfy the Kraft’s inequality (1.2), they introduced the 

following quantity 

           (1.6) 

and call it as ‘useful’ mean length of the code. Further they derived a lower bound for (1.6). However, Longo [12] 

interpreted (1.6) as the average transmission cost of the letters  with probabilities  and utility  and gave some 

practical interpretations of this length; also bounds for the cost function (1.6) in terms of (1.5) are also derived by him. 
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In coding theory, usually we come across the problem of efficient coding of messages to be sent over a noiseless 

channel where our concern is to maximize the number of messages that can be sent through a channel in a given time. 

Therefore, we find the minimum value of a mean codeword length subject to a given constraint on codeword lengths. As 

the code-word lengths are integers, the minimum value lies between two bounds, so a noiseless coding theorem seeks to 

find these bounds which are in terms of some measure of entropy for a given mean and a given constraint. Shannon [17] 

found the lower bounds for the arithmetic mean by using his own entropy. Campbell [4] defined his own exponentiated 

mean and by applying Kraft’s [11] inequality, found lower bounds for his mean in terms of Renyi’s [16] measure of 

entropy. Longo [12] developed lower bound for useful mean codeword length in terms of weighted entropy introduced 

by Belis and Guiasu [1]. Guiasu and Picard [5] proved a noiseless coding theorem by obtaining lower bounds for another 

useful mean codeword length. Gurdial and Pessoa [6] extended the theorem by finding lower bounds for useful mean 

codeword length of order  also the various authors like Jain and Taneja [9], Taneja et al [19], Hooda and Bhaker [8], 

Khan et al [10], have studied generalized coding theorems by considering different generalized ‘useful’ information 

measures under the condition of uniquely decipherability. 

In this paper we define a new generalized useful average code-word length  of order and type  and its 

relationship with new generalized useful information measure of order and type  has been discussed. The lower and 

upper bound of , in terms of  have been obtained for a discrete noiseless channel in section 2. The 

measures defined in this communication are not only new but some well known measures are the particular cases of our 

proposed measures that already exist in the literature of useful information and coding theory. In section 3, the noiseless 

coding theorems for discrete channel proved in this paper are verified by considering Huffman and Shannon-Fano coding 

schemes on taking empirical data. The important properties of  have also been studied in section 4. 

2. NOISELESS CODING THEOREMS ON ‘USEFUL’ CODES 

Define a new generalized useful information measure of order  and type for incomplete probability distribution 

as: 

          (2.1) 

Where   

Remarks for (2.1) 

I. When  and  (2.1) reduces to ‘useful’ information measure for the incomplete distribution due to 

Bhakar and Hooda [2]. i.e., 

      (2.2) 

II. When   i.e., when the utility aspect is ignored, and , 

the measure (2.1) reduces Shannon’s [17] entropy. i.e.,  
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      (2.3) 

III. When   i.e., when the utility aspect is ignored,  

and , the measure (2.1) reduces to maximum entropy. i.e., 

             (2.4) 

IV. When  the measure (2.1) reduces to useful information measure for the incomplete power distribution 

due to Sharma, Man and Mitter [18]. i.e.,  

      (2.5) 

V. When   i.e., when the utility aspect is ignored, (2.1) reduces to a measure 

of incomplete power probability distribution due to Mitter and Mathur [13]. i.e., 

       (2.6) 

Further we define a new generalized useful average code-word length of order  and type corresponding to 

(2.1) and is given by 

         (2.7) 

Where and D is the size of code 

alphabet. 

Remarks for (2.7) 

I. When  and  (2.7) reduces to ‘useful’ codeword length due to Guiasu and Picard [5]. i.e., 

      (2.8) 

II. When   i.e., when the utility aspect is ignored, and , 

(2.7) reduces to optimal codeword length defined by Shannon [17]. i.e.,  

      (2.9) 
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III. When   i.e., when the utility aspect is ignored,  

and  then (2.7) reduces to 1. 

Now we derive the lower and upper bound of (2.7) in terms of (2.1) under the condition   

           (2.10) 

This is generalization of Kraft’s inequality (1.2). It is easy to see that 

when i.e., when the utility aspect is ignored and  then the inequality 

(2.10) reduces to Kraft’s [11] inequality (1.2). A code satisfying (2.10) would be termed as a ‘useful’ personal probability 

code. 

Theorem 2.1: Let  and , satisfies the inequality (2.10), then the two parametric generalized 

‘useful’ code-word length (2.7) satisfies the inequality 

      (2.11) 

is fulfilled .Where and  are defined in (2.1) and (2.7) respectively. Furthermore, equality holds 

good iff 

         (2.12) 

Proof: By Holder
’
s inequality, we have 

        (2.13) 

For all  and  or . We see the 

equality holds iff there exists a positive constant  such that 

           (2.14) 

Making the substitution 
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     and  . 

Using these values in (2.13), and after suitable simplification we get 

    (2.15) 

Now using the inequality (2.10), we get 

       (2.16) 

Or equation (2.16), can be written as 

       (2.17) 

As , then , raising both sides to the power   , to equation (2.17), we get 

        (2.18) 

 

As ,  then  and , multiply equation (2.18) both sides by  

 we get 

       (2.19) 

This implies 

   Hence the result for ,  

Now we will show that the equality in (2.11) holds if and only if 

   ,  
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Or equivalently, we can write 

    

Or we can write 

         (2.20) 

Raising both sides to the power , to equation (2.20), and after simplification we get 

        (2.21) 

Multiply equation (2.21) both sides by and then summing over  both sides to the resulted 

expression and after suitable simplification, we get 

    

Or equivalently, 

        (2.22) 

Raising both sides to the power  to equation (2.22), then multiply both sides by   , we get 

       (2.23) 

This implies 

    Hence the result 

Theorem 2.2: For every code with lengths  satisfies the condition (2.10),  can be made to satisfy 

the inequality 
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   (2.24) 

Proof: From the theorem (2.1) we have 

   , holds if and only if 

   ,  

Or equivalently we can write 

    

Now we choose the code-word lengths  in such a way that they satisfy the inequality, 

  

Consider the interval 

   

of length unity. In every   there lies exactly one positive integer  such that, 

  (2.25) 

Now we will first show that the sequence  thus defined satisfies the inequality (2.10), which is 

generalization of Kraft inequality. 

From the left inequality of (2.25), we have 

    

Or equivalently, we can write 
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          (2.26) 

Multiply equation (2.26) both sides by then summing over both sides to the resulted expression, and 

after suitable operations, we get the required result (2.10), i.e.,  

       

Now the last inequality of (2.25), gives 

    

Or equivalently, we can write 

         (2.27) 

As then , and  raising both sides to the power  to equation (2.27), 

and after suitable operations, we get 

   

Or equivalently, we can write 

       (2.28) 

Multiply equation (2.28) both sides by and then summing over  both sides to the resulted 

expression and after suitable simplification, we get 

    

Or equivalently, we can write 
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        (2.29) 

 

As then  and , raising both sides to the power  to 

equation (2.29), then multiply the resulted expression both sides by  we get 

    

This implies 

  . Hence the result for  

Thus from above two coding theorems, we have shown that 

  .where  

In the next section we verify the noiseless coding theorems by considering Shannon-Fano coding scheme and 

Huffman coding scheme on taking an empirical data. 

3. ILLUSTRATION 

In this section we illustrate the veracity of the theorems 2.1 and 2.2 by taking empirical data as given in table (3.1) 

and (3.2) on the lines of Ashiq and Baig [3]. 

Using Huffman coding scheme the values of ,  and  for different values 

of  and  are shown in the following table: 

Table (3.1): Here D=2 in this case, as we use here binary code 

Probabilities 

       

Huffman 

Code 

words 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

0.3846 0 1 1 0.9 1 11.894 12.032 98.853% 12.748 

0.1795 100 3 2 0.8 0.9 12.338 13.117 94.061% 14.173 

0.1538 101 3 3 0.5 1 4.820 5.269 91.478% 6.817 

0.1538 110 3 3       

01282 111 3 4       
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Now using Shannon-Fano coding scheme the values of ,  and  for 

different values of  and  are shown in the following table: 

Table (3.2): Here D=2 in this case, as we use here binary code 

Probabilities 

       

Shannon

Fano 

Code 

words 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

0.3846 0 1 1 0.9 1 11.894 12.294 96.746% 12.748 

0.1795 100 2 2 0.8 0.9 12.338 13.779 89.542% 14.173 

0.1538 101 3 3 0.5 1 4.820 6.280 76.751% 6.817 

0.1538 110 4 3       

0.1282 111 4 4       

From table (3.1) and (3.2) we infer the following: 

I. Theorems 2.1 and 2.2 hold both the cases of Shannon-Fano codes and Huffman codes. i.e.  

            .where  

II. Huffman mean code-word length is less than Shannon-Fano mean code-word length. 

III. Coefficient of efficiency of Huffman codes is greater than coefficient of efficiency of Shannon-Fano codes i.e. it 

is concluded that Huffman coding scheme is more efficient than Shannon-Fano coding scheme. 

4. PROPERTIES OF NEW GENERALIZED ‘USEFUL’ INFORMATION MEASURE OF ORDER AND 

TYPE    

In this section we will discuss some properties of new generalized ‘useful’ information measure of order and 

type  given in (2.1) 

Property 4.1:  is non-negative. 

Proof: From (2.1), we have 

                       

From table (3.1) and (3.2) it is observed that  is non-negative for given values of  and . 
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Property 4.2:  is a symmetric function on every  

Proof: It is obvious that  is a symmetric function on every  i.e.,

  

Property 4.3:  is maximum when all the events have equal probabilities. 

Proof: When  and  and  i.e., when the utility 

aspect is ignored, and  Then which is maximum entropy. 

Property 4.4:  is concave function for  

Proof: From (2.1), we have 

                     

 If  i.e., when the utility aspect is ignored, and  

then the first derivative of (2.1) with respect is given by 

    

And the second derivative is given by  

  .  For all   and  

Since the second derivative of   with respect to  is negative on given interval  

 as  i.e., when the utility aspect is ignored, and 

therefore, 

 is concave function for  
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5. CONCLUSION 

In this paper we define a new generalized ‘useful’ entropy measure of order and type  i.e., .This 

measure also generalizes some well-known information measures already existing in the literature of ‘useful’ information 

theory. Also we define a new generalized ‘useful’ code-word mean length i.e.,  corresponding to , 

and then we characterize  in term of  and showed that 

  .where  

      Further we have established the noiseless coding theorems proved in this paper with the help of two different 

techniques by taking experimental data and show that Huffman coding scheme is more efficient than Shannon-Fano 

coding scheme. The important properties of  have also been studied.   
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