
Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 01– Issue 01, June 2013 

 

Asian Online Journals (www.ajouronline.com)  4 

 

Application of Hurwitz-Radon Matrices in Shape Coefficients 

Dariusz Jakóbczak 
 

Department of Electronics and Computer Science, Technical University of Koszalin, Sniadeckich 2, 75-453 Koszalin, Poland 

 
__________________________________________________________________________________________ 

ABSTRACT— Computer vision needs suitable methods of shape representation and contour reconstruction. 

Method of Hurwitz-Radon Matrices (MHR), invented and described by the author, is applied in reconstruction and 

interpolation of curves in the plane. Reconstructed curves represent the shape and contour of the object. Any point of 

the contour can be calculated by MHR method and then parameters of the object, used in shape coefficients, are 

computed: length of the contour, area of the object, Feret’s diameters. Proposed method is based on a family of 

Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal 

vectors. The operator of Hurwitz-Radon (OHR), built from these matrices, is described. The shape is represented by 

the set of nodes. It is shown how to create the orthogonal and discrete OHR and how to use it in a process of shape 

representation and reconstruction. MHR method is interpolating the curve point by point without using any formula 

or function. 

 

Keywords— shape coefficients, curve interpolation, contour reconstruction, length estimation, area estimation, Hurwitz-

Radon matrices. 
_____________________________________________________________________________________________ 

1. INTRODUCTION 

A significant problem in object recognition and computer vision [1] is that of appropriate shape representation and 

reconstruction. Classical discussion about shape representation is based on the problem: contour versus skeleton. This 

paper is voting for contour which forms boundary of the object. Contour of the object, represented by contour points, 

consists of information which allows us to describe many important features of the object as the shape coefficients [2].  

A digital curve (open or closed) may be represented by chain code (Freeman’s code). Chain code depends on 

selection of the started point and transformations of the object. So Freeman’s code is one of the method how to describe 

and to find contour of the object. An analog (continuous) version of Freeman’s code is the curve  - s. Another contour 

representation and reconstruction is based on the Fourier coefficients calculated in Discrete Fourier Transformation 

(DFT). These coefficients are used to fix similarity of the contours with different sizes or directions. If we assume that a 

contour is built from the segments of a line and fragments of circles or ellipses, Hough transformation is applied to detect 

the contour lines. Also geometrical moments of the object are used during the process of object shape representation [3]. 

MHR method requires to detect specific points of the object contour, for example in compression and reconstruction of 

monochromatic medical images [4]. Contour is also applied in the shape decomposition [5]. Many branches of medicine, 

for example computed tomography [6], need suitable and accurate methods of contour reconstruction [7]. Also industry 

and manufacturing are looking for the methods connected with geometry of the contour [8]. So suitable shape 

representation and precise reconstruction or interpolation [9] of the object contour is a key factor in many applications of 

computer analysis and image processing. 

2. CONTOUR REPRESENTATION 

The shape can be represented by the object contour, i.e. curves that create each part of the contour. One curve is 

described by the set of nodes (xi,yi)  R2 (contour points) as follows in proposed method: 

1. nodes (interpolation points) are settled at local extrema (maximum or minimum) of one of coordinates and at least one 

point between two successive local extrema; 

2. nodes (xi,yi) are monotonic in coordinates xi (xi < xi+1 for all i) or yi (yi < yi+1); 

3. one curve (one part of the contour) is represented by at least five nodes. 

 



Asian Journal of Fuzzy and Applied Mathematics 

Volume 01– Issue 01, April 2013 

 

Asian Online Journals (www.ajouronline.com)  5 

 

   Condition 1 is done for the most appropriate description of a curve. So we have m curves C1, C2, ... Cm that build whole 

contour and each curve is represented by the nodes according to assumptions 1-3. 

 

 

Fig. 1. A contour consists of three parts (three curves and their nodes). 

Fig. 1 is an example for m = 3: first part of the contour C1 is represented by the nodes monotonic in coordinates xi, 

second part of the contour C2 is represented by the nodes monotonic in coordinates yi and third part C3 could be 

represented by the nodes either monotonic in coordinates xi or monotonic in coordinates yi. Number of the curves is 

optional and number of the nodes for each curve is optional too (but at least five nodes for one curve). Representation 

points are treated as interpolation nodes. How accurate can we reconstruct whole contour using representation points? 

The contour reconstruction is possible using novel MHR method. 

3. CONTOUR RECONSTRUCTION 

The following question is important in mathematics and computer sciences: is it possible to find a method of curve 

interpolation in the plane without building the interpolation polynomials or other functions? Our paper aims at giving the 

positive answer to this question. In comparison MHR method with Bézier curves, Hermite curves and B-curves (B-

splines) or NURBS one unpleasant feature of these curves must be mentioned: a small change of one characteristic point 

can make big change of whole reconstructed curve. Such a feature does not appear in MHR method. The methods of 

curve interpolation based on classical polynomial interpolation: Newton, Lagrange or Hermite polynomials and the 

spline curves which are piecewise polynomials [10]. Classical methods are useless to interpolate the function that fails to 

be differentiable at one point, for example the absolute value function f(x) = xat x=0. If point (0;0) is one of the 

interpolation nodes, then precise polynomial interpolation of the absolute value function is impossible. Also when the 

graph of interpolated function differs from the shape of polynomials considerably, for example f(x) = 1/x, interpolation is 

very hard because of existing local extrema of polynomial. Lagrange interpolation polynomial for function f(x) = 1/x and 

nodes (5;0.2), (5/3;0.6), (1;1), (5/7;1.4), (5/9;1.8) has one minimum and two roots. 

 

 
Fig. 2. Lagrange interpolation polynomial for nodes (5;0.2), (5/3;0.6), (1;1), (5/7;1.4), (5/9;1.8) differs extremely from the shape of 

function f(x) = 1/x. 

We cannot forget about the Runge’s phenomenon: when the interpolation nodes are equidistance then high-order 

polynomial oscillates toward the end of the interval, for example close to -1 and 1 with function f(x) = 1/(1+25x2) [11]. 

Method of Hurwitz – Radon Matrices (MHR), described in this paper, is free of these bad features. The curve or function 

in MHR method is parameterized for value   [0;1] in the range of two successive interpolation nodes. 
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3.1   The Operator of Hurwitz-Radon  

Adolf Hurwitz (1859-1919) and Johann Radon (1887-1956) published the papers about specific class of matrices in 

1923, working on the problem of quadratic forms. Matrices Ai, i = 1,2…m satisfying 

 

AjAk+AkAj = 0, Aj
2 = -I  for  j ≠ k; j, k = 1,2...m 

 
are called a family of Hurwitz - Radon matrices. A family of Hurwitz - Radon (HR) matrices has important features [12]: 
HR matrices are skew-symmetric (Ai

T = - Ai) and reverse matrices are easy to find (Ai
-1 = - Ai). Only for dimension N = 2, 

4 or 8 the family of HR matrices consists of N - 1 matrices. For N = 2 we have one matrix: 
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For N = 4 there are three HR matrices with integer entries: 
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For N = 8 we have seven HR matrices with elements 0, ±1 [4].  

   So far HR matrices are applied in electronics [13]: in Space-Time Block Coding (STBC) and orthogonal design [14], 

also in signal processing [15] and Hamiltonian Neural Nets [16]. 

   If one curve is described by a set of representation points {(xi,yi), i = 1, 2, …, n} monotonic in coordinates xi, then HR 

matrices combined with the identity matrix IN are used to build the orthogonal and discrete Hurwitz - Radon Operator 

(OHR). For nodes (x1,y1), (x2,y2) OHR M of dimension N = 2 is constructed: 








 












12

21

12

21

12211221 ))((
yy

yy

xx

xx
AyIyAxIxB , B

xx
M

2

2

2

1

1


 , 

                                  
















22111221

21122211

2

2

2

1

1

yxyxyxyx

yxyxyxyx

xx
M

.                             (1) 

 

Matrix M in (1) is found as a solution of equation: 
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For nodes (x1,y1), (x2,y2), (x3,y3), (x4,y4), monotonic in xi, OHR of dimension N = 4 is constructed: 
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where 

443322110 yxyxyxyxu  ,   
344312211 yxyxyxyxu  , 

241342312 yxyxyxyxu  ,  
142332413 yxyxyxyxu  . 

Matrix M in (3) is found as a solution of equation: 
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For nodes (x1,y1), (x2,y2), …, (x8,y8), monotonic in xi, OHR of dimension N = 8 is built [17] similarly as (1) or (3). Note 

that OHR operators M (1)-(3) satisfy the condition of interpolation 

                                                                   Mx = y                                                      (5) 

 

for x = (x1,x2…,xN)T  RN, x  0, y = (y1,y2…,yN)T  RN, N = 2, 4 or 8. 

   If one curve is described by a set of nodes {(xi,yi), i = 1, 2, …, n} monotonic in coordinates yi, then HR matrices 

combined with the identity matrix IN are used to build the orthogonal and discrete reverse Hurwitz - Radon Operator 

(reverse OHR) 

M-1. If matrix M in (1)-(3) is described as: 
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where D with elements u1, …, uN-1, then reverse OHR M-1 is given by: 
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Note that reverse OHR operator (6) satisfies the condition of interpolation    

 

                                               M-1y = x                                                                       (7) 

 

for x = (x1,x2…,xN)T  RN, y = (y1,y2…,yN)T  RN, y  0 , N = 2, 4 or 8. 

3.2  Method of Hurwitz-Radon Matrices 

Key question looks as follows: how can we compute coordinates of points settled between the interpolation nodes? On a 

segment of a line every number “c” situated between “a” and “b” is described by a linear (convex) combination c=  

a+(1 - )  b for 

                                                  
ab

cb




  [0;1].                                                     (8) 

 

   When the nodes are monotonic in coordinates xi, the average OHR operator M2 of dimension N = 2, 4 or 8 is 

constructed as follows: 

 

                                                       
102 )1( MMM                                        (9) 

 

with the operator M0 built (1)-(3) by “odd” nodes (x1=a,y1), (x3,y3), …, (x2N-1,y2N-1) and M1 built (1)-(3) by “even” nodes 

(x2=b,y2), (x4,y4), …, (x2N,y2N). Having the operator M2 for coordinates xi < xi+1 it is possible to reconstruct the second 

coordinates of points (x,y) in terms of the vector C defined with 

 

                                        ci = x2i-1+ (1-)x2i     ,    i = 1, 2,…, N                            (10) 

 

as C = [c1, c2,…, cN]T. The required formula is similar to (5): 
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in which components of vector Y(C) give the second coordinate of the points (x,y) corresponding to the first coordinate, 

given in terms of components of the vector C. 

   On the other hand, having the operator M2
-1 for coordinates yi < yi+1 it is possible to reconstruct the first coordinates of 

points (x,y):  
1

1

1

0

1

2 )1(


 MMM  ,    ci = y2i-1+ (1-)y2i , 

                                                          CMCX 
1

2)(     .                                           (12) 

 

   Contour of the object is constructed with several number of curves. Calculation of unknown coordinates for contour 

points using (8)-(12) is called by author the method of Hurwitz - Radon Matrices (MHR). Here is the application of 

MHR method for functions f(x) = 1/x (nodes as Fig. 2) and f(x) = 1/(1+25x2) with five nodes equidistance in first 

coordinate: xi = -1, -0.5, 0, 0.5, 1. 

a)      b)    
Fig. 3. Twenty six interpolated points of functions f(x)=1/x (a) and f(x) = 1/(1+25x2) (b) using  MHR method with 5 nodes. 

MHR interpolation for function f(x) = 1/x gives better result then Lagrange interpolation (Fig. 2). The same can be said 

for function f(x) = 1/(1+25x2). 
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4. SHAPE COEFFICIENTS 

Shape coefficients are the parameters that characterizing and describing the shape of the object. Most of the shape 

coefficients are calculated using area of the object S and length of the contour L. For example [18]: 
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i

i

i

i

H
dc

d

R
1

2

2

, 

8. coefficient of compactness RC 
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9. coefficient Rmin/Rmax 

max

min

R

R
, 

where: 

Rmin – minimal distance of object contour to center of gravity, 

Rmax – maximal distance of object contour to center of gravity, 

Sp – minimal area of the rectangle covering the object, 

Lh – maximal horizontal diameter of the object (horizontal Feret’s diameter), 

Lv – maximal vertical diameter of the object (vertical Feret’s diameter), 

ri – distance of object pixel to center of gravity, 

i – number of object pixel, 

li – minimal distance of object pixel to object contour, 

di – distance of contour pixel to center of gravity, 
c – number of contour pixels.  
 

4.1 Length of the contour 
 
The contour is divided into m curves C1, C2, ... Cm. Having nodes (x1,y1), (x2,y2),…, (xn,yn) for each Ci in MHR method, 

it is possible to compute as many curve points as we want for any parameter   [0;1] (8). Assume that k is the number 
of reconstructed points p together with n nodes (k = n + p). So a curve Ci consists of k points that are indexed (x1’,y1’), 
(x2’,y2’),…, (xk’,yk’), where (x1’,y1’) = (x1,y1) and (xk’,yk’) = (xn,yn). The length of a curve Ci, consists of k points, is 
estimated: 
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Length of whole contour L is computed: 

 

                                          L = d(C1) + d(C2) + … + d(Cm).                                      (14) 

 

Two examples of estimation a length of the curve via MHR method. 

Example 1 The graph of function f(x) = 1/(1+5x2) reconstructed via MHR method (8)-(11) for N = 2 with nodes x = -1.0, -

0.5, 0, 0.5, 1.0 (n = 5) and calculated points p = 36 looks as follows (the curve is described by k = 41 points): 

 

Fig. 4. The curve y = 1/(1+5x2) reconstructed by MHR method for five nodes and 36 calculated points 

Length of the curve characterized on Fig.4 and estimated by (13) is d(C) = 2.643 whereas precise length is d(f) = 2.679. 

There is no Runge phenomenon on Fig.4 and MHR method preserves the symmetry of the curve. 

Example 2 The graph of function f(x) = 2/x reconstructed via MHR (8)-(11) for N = 2 with nodes x = 0.4, 0.7, 1.0, 1.3, 

1.6 (n = 5) and calculated points p = 36 looks as follows (the curve is described by k = 41 points): 

 

Fig. 5. The curve y = 2/x reconstructed by MHR method for five nodes and 36 calculated points 

Length of the curve characterized on Fig.5 and estimated by (13) is d(C) = 4.050 whereas precise length is d(f) = 4.045. 

 

4.2 Area of the object 

 

   Area of the object can be divided horizontally or vertically (Fig.6) into the set of l polygons: triangles and quadrangles 

(squares, rectangles, trapezoids, rhombuses, parallelograms). 

 
Fig. 6. The object area consists of polygons. 

The coordinates of corners for each polygon Pi are calculated by MHR method and then it is easy to estimate the area of 

Pi. For example P1 as a trapezoid with the corners (x1,y1), (x1,y2), (x2,y3), (x2,y4): 

 
Fig. 7. Trapezoid as a part of the object. 

Area of a trapezoid P1 is computed: 
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It is easy to compute the area of other polygons with given corners: for example a triangle P2 with sides a, b, c and p = 

(a+b+c)/2: 
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Estimation of the object area S is given by a formula: 
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Feret’s diameters (horizontal Lh and vertical Lv) are also possible to calculate having a contour of the object. Contour 

points, computed by MHR method [19], are applied in shape coefficients. 

5. CONCLUSIONS 

The method of Hurwitz-Radon Matrices leads to contour interpolation and shape reconstruction depending on the 

number and location of contour points. No characteristic features of the curve, significant for classical polynomial 

interpolations or Bezier curves and NURBS, are important in MHR method. MHR gives the possibility of reconstruction 

a curve consists of several parts, for example closed curve (contour). The only condition is to have a set of nodes for each 

part of a curve or contour according to assumptions in MHR method. Any point of the contour can be calculated by MHR 

method and then parameters of the object used in shape coefficients are computed. Contour representation and curve 

reconstruction by MHR method is connected with possibility of changing the nodes coordinates and reconstruction of 

new curve or contour for new set of nodes, no matter what shape of curve or contour is to be reconstructed. Main features 

of MHR method are: accuracy of shape reconstruction depending on number of  nodes and method of choosing nodes; 

reconstruction of curve consists of L points is connected with the computational cost of rank O(L) [19]; MHR method is 

dealing with local operators: average OHR operators are built by successive 4, 8 or 16 nodes, what is connected with 

smaller computational costs then using all nodes; MHR is not an affine interpolation [19]. 

     Future works are connected with: geometrical transformations of contour (translations, rotations, scaling)- only 

nodes are transformed and new curve (for example contour of the object) for new nodes is reconstructed, possibility to 

apply MHR method to three-dimensional curves and connection MHR method with object recognition. 
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