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ABSTRACT— In this paper linear Volterra integro-differential equations are discussed. Examples of these questions 

have been solved numerically using various methods for ODE (Ordinary Differential Equation) parts and quadrature 

rules for integral parts. Finally, a new fourth order routine is used for the numerical solution of the linear integro-

differential equation. 
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1. INTRODUCTION 

 The term integral equation was apparently first used by Du Bois-Reymond in 1883. An integral equation is an equation 

in which the function to be determined appears under the integral sign. If we consider linear integral equations, that is, 

equations in which no nonlinear functions of the unknown function are involved. Consider the linear integro-differential 

equation of the form 
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Equation (1) can be solved numerically using various methods. In this paper  )( ntu  will denote the exact value of u at  

nhttn  0 . We shall use  )(~
ntu   or nu~   to denote an approximate value of u at nt . However, in this paper we will 

define third and fourth order numerical methods for (1). Since the integral can not be determined explicitly, it may be 

approximated using familiar numerical integration methods. The Newton-Cotes integration formulas, which include the 

trapezoidal rule and Simpson’s 1/3, are well suited here since they use nodes which were given in [8] and [2]. In section 

2, we consider an elementary class of formulae for the numerical solution of integro-differential equation of first-order, 

based upon the   -method. Recall that a functional equation in which the unknown function appear in the form of its 

derivatives as well as under the integral sign is called an integro-differential equation (see [12] ). 

  In practice the equations encountered are rather more complex than these examples, and the Laplace transform 

technique is therefore primarily a theoretical tool. 

 

2. THE NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATIONS 

In general formulae for numerical solution of integro-differential equations rely upon formulae for the underlying 

ODE (Ordinary Differential Equation), combined with auxiliary quadrature rules approximation of 
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If we adapt the  -method to equation (1) in a natural manner, we obtain 

 

 

(3)     ,))(~,~,())(~,~,()1(~~
1111   nnnnnnnn tzutFtzutFhuu   



Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 01– Issue 01, June 2013  

Asian Online Journals (www.ajouronline.com)  29 

 

where )(~
ntz  defined in (2) and ].1,0[   If we define )(~

ntz  for  -method, we have 
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There are three important cases:   =0,  =1 and  =0.5. If  =0.5 then the equation (3) becomes 
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The trapezoidal rule has local truncation error )( 3hO ,  if K and F sufficiently smooth and the convergence )( 2hO . 

If   =0 then the equation (3) becomes  

(5)   .))(~,~,(~~
1 nnnnn tzutFhuu   

This method is then an explicit Euler method and has corresponding local truncation error (LTE) )( 2hO , and the 

convergence )(hO . 

If  =1 then the equation (3) becomes  
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This method is a backward- Euler method and has corresponding LTE )( 2hO , and the convergence )(hO . Of course, 

whereas we have defined approximations )(~
ntz  in terms of quadrature rules that reflect the underlying ODE method, it 

is in principle possible to “mix and match”. Thus we can combine (2) with the approximation (3). The combinations of 

the formulae can be chosen on the basis of orders of convergence. The above discussion was based on the method. There 

are two directions in which this method can be generalized. The first involves adapted linear multistep methods (LMM) 

for ODE’s and second involves adapting Runge-Kutta methods. In each case, we shall require to approximate terms   
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Equation (1) can be solved numerically using various methods. In this paper we will focus on third and fourth order 

numerical methods for (1). The integral can not be determined explicitly; it may be approximated using familiar 

numerical integration methods. 

Table 1: Table of orders of convergence Example 3.1 of (1). 

ODE/Quadrature Rectangle(Left End) Trapezoidal Rectangle(Right End) 

Forward Euler 

Trapezoidal 

Backward Euler 

)(hO  

)(hO  

 )(hO  

 )(hO  

  )( 2hO  

)(hO  

 )(hO  

)(hO  

)(hO  

 
The Newton-Cotes integration formulae, which include the trapezoidal rule and Simpson’s 1/3, are well suited here since 

they use nodes which were previously calculated: 

 

)(~),()(),(
0

,

0

jjn

n

j

jn

t

t

tuttKhdssustK
n




  , 

 

 where jn,  are the appropriate coefficients for the composite integration schemes chosen. A combination of 

integration method may be used. Thus, the composite explicit Euler-Newton Cotes scheme (with first order accuracy) 

applied to (1) becomes 
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Simpson’s 1/3 rule requires that n , the number of subintervals dividing  ],[ 0 ntt  be even. Therefore, Simpson’s 1/3 rule 

can not be used at each step. When n  is odd, one method is to use Simpson’s 1/3 rule on ],[ 10 ntt  and trapezoidal rule 

on ],[ 1 nn tt  , adding the results to approximate the integral on ],[ 0 ntt . Another method is to use the trapezoidal rule 

],[ 10 tt  and Simpson’s 1/3 rule thereafter. 

3.  THE FOURTH ORDER NUMERICAL ROBUST ROUTINE OF LINEAR INTEGRO-

DIFFERENTIAL EQUATIONS 

The explicit finite difference method given in (5) as applied to (1) easily extended to more accurate predictor-corrector 

method. The predictor step uses (5) to obtain


1
~

nu , which is followed by the corrector step, which uses higher order 

trapezoidal method 
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This procedure is sometimes referred to as modified Euler method (second order Runge-Kutta-RK2) and is 

one order magnitude more accurate than the explicit method.  

The fourth order classical Runge-Kutta method (RK4) can also be adapted to the numerical solution of (1). 

Stepping from nu~  with step-size h to obtain 1
~

nu , the RK4 method as applied to this problem may be written as 
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    In this example, the trapezoidal rule is used to approximate dssustKtz
nt

t

n 
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calculating, 2k   and 3k  while Simpson’s 1/3 rule is used on ],[ 1nn tt in calculating 4k . If desired, the 

trapezoidal rule may be used on  ],[ 0 ntt  (gives second order accuracy); the trapezoidal rule and Simpson’s 1/3 

rule (giving third order accuracy, see Table 3) may be used on ].,[ 0 ntt  

In order to get fourth order accuracy the integral term must be evaluated more accurately on ],[ 2/1nn tt  in 

calculating 2k   and 3k , as shown in (9) and (10) below. While (10) is used ],[ 1nn tt  in calculating 4k accurately 

(better than trapezoidal rule). Simpson’s method I may be used on ],[ 0 ntt  or Simpson’s method II (see these 
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methods [9]) may be used on ],[ 0 ntt . If we interpolating on 2/11
~,~,~

 nnn uuu   (special formulae required for 

the first step, for example we can use (8)) Lagrange’s formula for points t= -1, 0, 1/2 gives 
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If we integrate the expression between 0 and h/2, we get 
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Similarly, we can find t= -1, 0, 1 
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Therefore the Runge-Kutta formulae become  2n  (for starting values we can use equation (8)) 
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Table 3 shows the fourth order accuracy obtained with this formula. In Example 3.1, we have used Runge-Kutta 

methods and numerical quadratures,  -method, the trapezoidal rule and Simpson’s rules and their combinations.  

Example 3.1: Consider a first order Linear Volterra integro-differential equation of the form 

(12)               .)0(;0,)()()(' 0
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This equation (12) has analytical solution  )cosh()sinh()( 0 tuttu 



  when k (t-s) =1. 

Case (i):  If we choose 0,1    and 0u =1, we obtain )(tu  = cos(t). 

Case (ii):  If we choose 1,1    and 0u =0, we obtain )(tu  =sin(t). 
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In this case, differentiation gives )()('' tutu   and the equation reduces to second order ODE. If the kernel 

of convolution type ( )),(),( stkstK   and ,|)(|
0




 dk  we can solve (1), with suitable initial 

conditions, by Laplace transforms (see [6], [5] and [1]).   We use the trapezoidal rule for the integral term. The errors 

found are given Table 2 and Table 3, where error=|true value – approximate value|. Unless otherwise indicated, in this 

paper, error means absolute error. Table 2 is consistent with the property that the order of the error is )( 2hO . 

Table 2: Example 3.1 solved using (3) with  =0.5, 1,0,1,1 max0  tu  gives )( 2hO . 

t Error with h=0.1 Error with h=0.05 Error with h=0.025 

0.2 

0.4 

0.6 

0.8 

1.0 

1.6310E-04 

3.0658E-04 

 4.1212E-04 

4.6393E-04 

4.4987E-04 

 4.0821E-05 

  7.6728E-05 

1.0313E-04 

1.1608E-04 

1.1254E-04 

 1.0208E-05  

1.9187E-05 

2.5790E-05 

2.9027E-05 

2.8139E-05 

 
Table 3:   Errors in the solution of (12) with; 

 

Errors in the Solutions (12) for Various Methods ( 1,0,1,1 max0  tu ) 

          Exact              (A) Explicit               (B) Implicit          (C) RK4 and SimpTrap                 (D) RK4 and Simp II 

t        Solution      h=0.025        h=0.0125      h = 0.025     h = 0.0125     h=0.025       h=0.0125     h = 0.025     h = 0.0125 

0.1   0.0998334   5.7228e-05   2.9907e-05   6.7538e-05  3.2485e-05   3.9424e-09   5.5109e-10   7.3484e-10   3.3681e-11 

0.2   0.1986693   2.3829e-04   1.2166e-04   2.5828e-04  1.2666e-04   1.7562e-08   2.3103e-09   1.0650e-09   5.4422e-11 

0.3   0.2955202   5.3976e-04   2.7348e-04   5.6822e-04  2.8059e-04   4.0594e-08   5.2430e-09   1.3730e-09   7.3910e-11 

0.4   0.3894183   9.5579e-04   4.8236e-04   9.9091e-04  4.9114e-04   7.2586e-08   9.2908e-09   1.6503e-09   9.1611e-11 

0.5   0.4794255   1.4782e-03   7.4414e-04   1.5176e-03  7.5399e-04   1.1290e-07   1.4373e-08   1.8888e-09   1.0702e-10 

0.6   0.5646425   2.0965e-03   1.0535e-03   2.1375e-03  1.0638e-03   1.6073e-07   2.0385e-08   2.0813e-09   1.1967e-10 

0.7   0.6442177   2.7983e-03   1.4043e-03   2.8375e-03  1.4141e-03   2.1509e-07   2.7207e-08   2.2209e-09   1.2913e-10 

0.8   0.7173561   3.5692e-03   3.6030e-03   4.0738e-06  1.7975e-03   2.7488e-07   3.4696e-08   2.3018e-09   1.3503e-10 

0.9   0.7833269   4.3930e-03   2.1999e-03   4.4178e-03  2.2061e-03   3.3884e-07   4.2695e-08   2.3191e-09   1.3705e-10 

1.0   0.8414710   5.2524e-03   2.6280e-03   5.2641e-03  2.6309e-03  4.0562e-07   5.1034e-08   2.2691e-09    1.3496e-10 

       Exact             (E) RK2 and Trap            (F) RK4 and Trap             (G) RK4 and TrapSimp        (H) RK4 and Simp I 

t     Solution        h=0.025        h=0.0125      h = 0.025     h = 0.0125   h=0.025        h=0.0125       h = 0.025      h = 0.0125 

0.1   0.0998334   5.1818e-06   1.2955e-06   7.1956e-09   1.9741e-09   2.3161e-09   2.4629e-10  7.3484e-10   3.3686e-11 

0.2   0.1986693   1.0208e-05   2.5522e-06   6.2993e-08   1.6502e-08   7.8435e-09   8.9431e-10  1.0657e-09   5.4461e-11 

0.3   0.2955202   1.4926e-05   3.7317e-06   2.1827e-07   5.6291e-08   1.6477e-08   1.9315e-09  1.3753e-09   7.4015e-11 

0.4   0.3894183   1.9187e-05   4.7971e-06   5.2191e-07   1.3354e-07   2.8050e-08   3.3373e-09  1.6552e-09   9.1811e-11 

0.5   0.4794255   2.2852e-05   5.7133e-06   1.0198e-06   2.5971e-07   4.2334e-08   5.0837e-09  1.8973e-09   1.0734e-10 

0.6   0.5646425   2.5790e-05   6.4478e-06   1.7539e-06   4.4524e-07   5.9044e-08   7.1356e-09  2.0941e-09   1.2014e-10 

0.7   0.6442177   2.7883e-05   6.9711e-06   2.7614e-06   6.9939e-07   7.7842e-08   9.4512e-09  2.2388e-09   1.2976e-10 

0.8   0.7173561   2.9027e-05   7.2572e-06   4.0738e-06   1.0300e-06   9.8344e-08   1.1983e-08  2.3255e-09   1.3585e-10 

0.9   0.7833269   2.9136e-05   7.2844e-06   5.7162e-06   1.4432e-06   1.2012e-07   1.4677e-08  2.3491e-09   1.3808e-10 

1.0   0.8414710   2.8139e-05   7.0351e-06   7.7067e-06   1.9437e-06   1.4271e-07   1.7477e-08  2.3057e-09   1.3619e-10 

Table 3. Errors in the solution of (12) with; 

(A) The explicit (  = 0 ) method and the trapezoidal rule (gives error O(h)); 

(B) The implicit (  = 1 ) method and the trapezoidal rule (gives error O(h)); 

(C) The fourth order Runge-Kutta method (RK4) and Simpson’s 1/3 rule and the trapezoidal rule (gives error )( 3hO ); 

(D) The fourth order Runge-Kutta method (RK4) and Simpson’s method II (gives error )( 4hO  ); 

(E) The second order Runge-Kutta method (RK2) and the trapezoidal rule (gives error )( 2hO  ); 

(F) The fourth order Runge-Kutta method (RK4) and the trapezoidal rule (gives error )( 2hO  ); 

(G) The fourth order Runge-Kutta method (RK4) and the trapezoidal rule and Simpson’s 1/3 rule (gives error )( 3hO  ); 

(H) The fourth order Runge-Kutta method (RK4) and Simpson’s method I (gives error )( 4hO  ); 



Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 01– Issue 01, June 2013  

Asian Online Journals (www.ajouronline.com)  33 

 

4. CONCLUSION 

In fact, after this numerical calculation we were expecting order of )( 4hO . In view, it seems to be true because of the 

truncation error for the classical fourth order Runge-Kutta (RK4) and Simpson’s rules are )( 4hO . Thus, we found the 

expected )( 4hO . Numerical order of convergence is also calculated: 

 

)2ln(

)ln()ln( 21 ErrorError
Ord


  

   We expected that Ord=4. Obtained theoretical results are confirmed by numerical experiments. 
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