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ABSTRACT--- In this paper we consider an initial problem for systems of differential equations of fractional order 

with a small parameter for the derivative. Regularization problem is produced, and algorithm for normal and unique 
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1. INTRODUCTION 

We consider the following singularly perturbed problem: 

 
(1/ 2) 0( , ) ( ) ( ), (0, ) , [0, ]L y t y A t y h t y y t T           (1) 

where 1 2{ , }y y y  unknown vector-function, 1 2( ) { , }h t h h known vector-function, ( ) 2 2A t    matrix-function, 

0 0 0

1 1{ , }y y y  known constant vector, 0   small parameter. It is required to construct a regularized asymptotic of a 

solution [1,2] of the problem (1) at for 0.    

According to the definition of a fractional order derivative [3,4,5], we write the problem (1) in the following form: 
0( , ) ( ) ( ), (0, ) , [0, ]L y t t y A t y h t y y t T             (2) 

We will consider the problem (2) under the following assumptions: 

1) 
2( ), ( ) ([0, ], ),A t h t C T   

2)  the spectrum { ( )} ( ( ))j t A t   of the matrix function ( )A t  satisfies the requirements: 

ai)
 

( ) 0 [0, ], 1,2;j t t T j      

b) ( ) ( ) [0, ], , , 1,2;i jt t t T i j i j       

c) ( ) 0 [0, ], 1,2.jRe t t T j      

2. REGULARIZATION OF THE PROBLEM 

We introduce regularizing variables [6]: 

0

( )1
( , ), 1,2

t
j

j j

s
ds t j

s


  


    

and instead of the problem (2), we will consider «extended» problem 
2

0

1

( , , ) ( ) ( ) ( ) (0,0, ) .,     j

j j

y y
t t t A t h t

t
L y y y y    






 

 
        (3) 

Relations of the problem (3) with the problem (2) is that if ( , , )y t    is a solution of the problem (3), then contraction of 

the solution  

1 2( , ( , ), ( , ), ) ( , )y t t t y t       

when 1 1 2 2( , ), ( , ), )t t         will be exact solution of the problem (2). 

Defining a solution of the system (34) in the form of series: 

  
0

( , , ) ( , ),k

k

k

y t y t   




  
2( , ) ([0, ], )ky t C T C     (4) 
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we obtain the following iteration problems: 
2

00
0 0 0

1

( , ) ( ) ( ) ( ) 0,0 ;,       ( )  j

j j

y
Ly t A t y h t y yt  






       (5) 

 0
1 1( , ) 0,0 0  ,       ( ) 

y
Ly t yt

t



 


 ;    (6) 

1( , ) , (0,0) 0, 1.k
k k

y
Ly t y k

t
 

   


     (7) 

  . . . . . .  

3. SOLVABILITY OF ITERATION PROBLEMS 

Solution of each of the iteration problems (5)-(7) will be defined in the space U  of functions of the form: 

2
2

0

1

( , ) : ( ) ( ) , ( ) ([0, ], ) .j

j j

j

U y t u y y t y t e y t C T C
 



  
    
  

    (8) 

Each of the iteration problems (5)-(7) has the following form: 
2

0
0

1

( , ) ( ) ( ) ( , ) j

j j

y
Ly t A t y h tt   






        (9) 

where ( , )h t U   corresponding right hand side. 

The following proposition takes place. 

Theorem 1. Let ( , )h t U   and conditions 1) and 2а), 2b) hold. Then, for solvability of the equation (9) in space 

,U  it is necessary and sufficient that the following conditions hold: 

( , ), ( ) 0, 1,2, [0, ]jh t d t j t T         (10) 

where ( )j td  eigenfunctions of the matrix of functions ( ),tA
 corresponding to eigenvalues ( ), 1,2.j t j   

Proof. Defining a solution ( , )y t   of the system (9) as an element (8) of the space ,U  we get the following systems 

for the coefficients 0,1,2,( ),jy jt   of the sum (8): 

( ) ( ) ( ) ( ), 1,2,k k kyt I A t t h t k 
        (11) 

 0 0 .( ) ( ) ( ), (1,1)yA t t h t I diag       (12) 

The system (12), due to ( ) 0,detA t   has a unique solution 
1

0 0( ) ( ) ( ).y t A t h t  The system (11) is solvable in 

[0, ]C T
 if and only if the condition ( ), ( ) 0, 1,2, [0, ],k kh t d t k t T     holds, that coincides with the condition 

(10). Theorem 1 is proved. 

Remark. If the conditions (10) hold, system (9) has a solution that can be represented as 

2 2
1

0

1
1

( ( ), ( ))
( , ) ( ) ( ) ( ) ( ) ( )

( ) ( )
kk s

k k s

k s k k s
s

h t d t
y t t c t c t e A t h t

t t

 
 



 


 
 
 
  

     (13) 

where [0, ], 1,2,( )k C T kt    arbitrary scalar functions. 

The following theorem establishes conditions under which the solution (13) of system (9) is uniquely defined in the 

class U . 

Theorem 2. Let 1), 2а), 2b)  hold and ( , )h t U   of the system (9) satisfy conditions (10). Then the system (10) 

with additional conditions: 
0(0,0) ,y y        (14) 

( , )
( ) 0, 1,2, [0, ], j

y t
t t j t T

t
d


   




       (15) 

where 
0 ny C  known constants, is uniquely solvable in the space .U  

Proof. Since conditions of Theorem 1 hold, the system (9) has a solution in the space U  in the form (13), where 

functions , 1,2,( )k kt   have not yet been found. To calculate them, we will use additional conditions (14) and (15). 

We subject (13) to the initial condition (14), we get the system: 
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2 2
1 0

0

1 , 1

( (0), (0))
(0) (0) (0) (0) (0) .

(0) (0)

k s
k k s

k s k s k s

h d
c c A h y

 



  

 
  

 
   

Multiplying scalarly both sides of this equality by (0)kd  and taking into account biorthogonality of the systems 

{ ( )}kc t  and { ( )}kd t  we uniquely find initial values 
0(0)k k   for the functions ( ), 1,2.k t k   

We subject now the function (13) to the condition (15). First calculate 
( , )

:
y t

t




 

2 2
1

0

1 , 1

( , ) ( ) ( , )( ) ( , )
( ) ) .(kk s k s k s k s k s

k k k k s s

k s k s k s k s

h d h d h d
c c c c e A h

   
 

   



  

      
       

    

   

Conditions (15) lead to the equations: 

 
2

1

0

,
1

( , )
( , ) ( , ) ) , 0, 1,2.(k s

k k k k k k k

s k k s
s

h d
t c d c d A h d k 

 






 
         
 
  

  

which together with the initial conditions 
0(0) ,k k   found earlier, allow us to uniquely find the functions 

, 1,2.( )k kt   Theorem 2 is proved. 

Thus, the solution (13) of the problem in the space U  is found unambiguously. Solutions of the next iteration 

problems (6),(7),… are found similarly in the space. Doing it, we construct the series (4). Denote by 

( , )
1

( ) ( , )
N

k

N k
t

k

y t y t   
 




  constriction of the N  th partial sum of the series at ( , ).t    The following 

proposition takes place. 

Theorem 3 (on formal asymptotic solution of the problem (2)). Let conditions 1) - 2) be fulfilled. Then the partial 

sum ( )Ny t  satisfies the problem (2) up to 
1( )( 0),NO     i.е. 

1 0( )
( ) ( ) ( ) ( , ), (0) , [0, ]NN

N N N

dy t
t A t y t h t R t y y t T

dt


            (16) 

where 
[0, ]

( , )N NC T
R t R   at all [0, ]t T  and 0.   

Proof. We put solutions 0 ( , ), , ( , )Ny t y t   into the systems (5),(6),(7),…respectively. We multiply the resulting 

identities by 1, , , N   respectively, and summing up them, we will have identities: 
1

0 0

( , )
( ( , )) ( )

N N
k k k

k

k k

y t
L y t h t

t


   



 


  


   

1
1

0 0

( , ) ( , )
( ( , )) ( ) .

N N
k k Nk N

k

k k

y t y t
L y t h t

t t

 
    




 

 
   

 
   

Denoting by ( , )NS t N  th partial sum of the series (4), we write this identity in the form: 

1( , , ) ( , , )
( , , ) ( ) NN N

N

S t y t
LS t h t

t t

   
     

   
 

 

2
1

1

( , , ) ( , , ) ( , , )
( ) ( ) ( , , ) ( ) .NN N N

j N

j j

S t S t y t
t A t S t h t

t t

     
    







  
    

  
  

This identity is true at all 
2( , , ) [0, ] { 0},t T       thus, it, particularly, is true at ( , ).t    However at 

( , )t    the left hand side of this identity coincides with full derivative with respect to t  of the function 

( ) ( , ( , ), ),N Ny t S t t    therefore, we will have: 

 1
, ( , )( )

( ) ( ) ( ) .
NNN

N

y t tdy t
t A t y t h t

dt t




 
  


  


 

Vector function is ( , ) ,Ny t U   hence it is represented as 

2
( ) ( )

0

1

( , ) ( ) ( )jN N

N j

j

y t y t e y t





   and thus, 
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0

1
( )2 2

( ) ( ) ( )

[0, ]
[0, ]1 1[0, ][0, ]

, ( , )
( ) ( ) ( ) .

t

jRe d
N N N N

j j j NC T
t Tj jC TC T

y t t
y t max e y t y t R

t

  
 

 


   


   

Here ( ) 0( [0, ]),jRe t t T     and then 

0

1
{ ( ) } 1

t

jexp Re d  


 ( [0, ]), 0, 1,2).t T j      It remains to be 

noted that the function ( )Ny t  satisfies the initial condition 
0(0) ,Ny y   since 

0

0 (0,0)y y  and all (0,0) 0jy   

whenever 1.j   Theorem 3 is proved. 

Theorem 3 shows, that the series (4), take non constriction ( , ),t    is a formal asymptotic solution of the 

problem (2). We show that in fact it converges asymptotically (as 0)   to an exact solution ( , )y t   of this problem 

(uniformly with respect to [0, ]).t T  Let us now prove the following main proposition. 

Theorem 4 (on estimation of remainder member). Let conditions 1) – 2) hold. Then the series (4) taken on 

constriction ( , ),t    is uniform with respect to [0, ]t T  asymptotic decomposition as 0)   of an exact 

solution ( , )y t   of the problem (2). Moreover, for any of its partial sums ( )Ny t  the following estimate is valid 

1

[0, ]
( , ) ( ) ( 0,1,2, )N

N NC T
y t y t C N         (17) 

where the constant 0NC   does not depend on   when 0.   

Proof. Due to Theorem 3 the partial sum ( )Ny t  satisfies the problem (16) and thus, remainder member 

( , ) ( , ) ( )N Nt y t y t     satisfies the following problem: 

1( , )
( ) ( , ) ( , ), (0, ) 0.NN

N N N

d t
A t t R t

dt


    

      

Using the normal fundamental matrix of solutions ( , , ),Y t s   we find 

0

( , ) ( , , ) ( , ) .

t

N Nt Y t s R t ds      

Therefore, we get the estimation: 

0[0, ]
( , ) N

N NC T
t k R T    

that is validate any 0,1,2, ,N   and any 0   and thus, for the partial sum 
1

, 1 1( ) ( ) ( , ( , ))N

N N Ny t y t y t t    

    

the following estimation holds: 
1 1

, 1 1 0 1[0, ] [0, ]
( , ) ( ) ( ( , ) ( )) ( , ( , )) .N N

N N N NC T C T
y t y t y t y t y t t k R T       

        

Using the inequality ,a b a b    we have 

1 1

1 0 1[0, ] [0,
( , ) ( ) ( , ( , ))N N

N N NC T C T
y t y t y t t k R T     

     

that yields the simple estimation:  
1 1

0 1 1 1[0, ]
( , ) ( ) ( ) N N

N N N NC T
y t y t k R T Q C   

       

where 

2 2
( , )( 1) ( 1) ( 1)

1 0 1[0, [0, ]
1 1

[0, ]

( , ( , )) ( ) ( ) ( )j tN N N

N j j NC T C T
j j

C T

y t t y t e y t y t Q
 

    

 

 

      

( 10,N NR Q   does not depend on 0).   From the inequality (17) it follows that the series (4), obtained on 

constriction ( , )t    is asymptotic for an exact solution ( , )y t   of the problem (2) as 0.    Theorem 4 is proved. 

Example. Using the algorithm developed above, construct the main term of the asymptotic solution of the Cauchy 

problem: 

(1/ 2)

(1/ 2) 0
1

0
2

( )0 1 (0, ) ,
,

( )1 0 (0, ) ,

y h ty y y

h tz z zz






     
              

,   (18) 

where [0, ]t T , 1,T  0  small parameter. Eigen values of the matrix ( )A t  of this system are numbers 1( ) ,t i   , 

2 ( ) .t i    The corresponding eigenvectors ( )jc t  and eigenvectors ( )jd t  of the conjugate operator ( )A t
 have the 

form: 
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1 ,
1

i
c

 
  

 
 2 ,

1

i
c

 
  

 
 1 ,

1

i
d

 
  
 

 2 .
1

i
d

 
  
 

  

Introduce regularizing variables:  

1 1 2 1

2 2
( , ), ( , ).

i i
t t t t     

 
      

For extended functions { ( , , ), ( , , )}w y t z t     we obtain the following problem: 

2
0

1

( ), (0,0, ) ,j

j j

w w
t Aw h t w w

t
  



 
   

 
  

where
0 0 0

1 2{ , }, ( ) { ( ), ( )}, { , }.w y z h t h t h t w y z    

Defining a solution of this problem in the form of series  

0

( , , ) ( , )k

k

k

w t u w t u 




  

we get the following iteration systems:  
2

00
0 0 0 0

1

( , ) ( ), (0,0) ;j

j j

w
L w t Aw h t w w 




   


   (

0 ) 

0
0 1 1( , ) , (0,0) 0;

w
L w t t w

t



  


   (

1 ) 

1
0 ( , ) , (0,0) 0, 1.k

k k

w
L w t t w k

t
 

   


  (
k ) 

We look for a solution of the equation (
0 ) in the form of the functions: 

1 2(0) (0) (0)

0 1 2 0( , ) ( ) ( ) ( ).w t w t e w t e w t
        (19) 

Putting (20) into the equation (17), and equating coefficients at the same exponentials and the free terms, we get: 
(0)

1 1[ ] ( ) 0,I A w t        (20) 

(0)

2 2[ ] ( ) 0,I A w t        (21) 

(0)

0 ( ) ( ).Aw t h t       (22) 

From the system (22) we find 
(0) 1

0 ( ) ( ).w t A h t   In the equations (20) and (21) 
(0) (0)

1 2( ), ( )w t w t  arbitrary 

functions. 

Thus, we have defined solution (19) of the system (
0 ) in the following way: 

1 2(0) (0) 1

0 1 1 2 2( , ) ( ) ( ) ( ),w t t c e t c e A h t
         (23) 

where 
(0) , 1,2( )k kt   arbitrary functions. 

We subject (23) to the initial condition 
0

0 (0,0) :w w  

0
1(0) (0)

1 20
2

(0)0 1
(0) (0) ,

(0)1 1 1 0

hi iy

hz
 

         
          

        
 

or 
(0) (0) 0

1 2 2

(0) (0) 0

1 2 1

(0) (0) (0) ,

(0) (0) (0) ,

i i h y

h z

 

 

   

   

 

then we get: 
0 0 0 0

(0) (0)1 2 1 2
1 2

(0) [ (0) ] (0) [ (0) ]
(0) , (0) .

2 2

z h i h y z h i h y
 

     
    (24) 

To uniquely define arbitrary functions 
(0) , 1,2,( )k kt   that are present in the solution (23) of the problem (

0 ), 

we proceed to the next iteration problem (
1 ). 

First we calculate: 

1 2(0) (0) 10
1 1 2 2

( , )
( ) ( ) ( ).

w t
t c e t c e A h t

t

 
  

  


   (25) 

Solution of the equation (
1 ) is sought as a function: 
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1 2(1) (1) (1)

1 1 2 0( , ) ( ) ( ) ( ).w t w t e w t e w t
         (26) 

Substituting (26) into the equation (
1 ) (taking into account (25)), and equating coefficients at the same exponentials and 

the free terms, we have: 
(1) (0)

1 1 1[ ] ( ) ( ),I A w t t t     

(1) (0)

2 2 2[ ] ( ) ( ),I A w t t t     

(1) 1

0 ( ) ( ).Aw t t A h t    

For solvability of the first two systems it is necessary and sufficient that 
(0) ( ) 0, 1,2.k t k    Taking into 

account the initial conditions ((24), we find the functions 
0 0

(0) (0) 1 2
1 1

(0) [ (0) ]
( ) (0) ,

2

z h i h y
t 

  
   

0 0
(0) (0) 1 2
2 2

(0) [ (0) ]
( ) (0) ,

2

z h i h y
t 

  
   

unambiguously. 

Thus, we defined arbitrary functions 
(0) ( ) 0, 1,2,k t k    in the solution (23), and thereby, uniquely 

determined the function (19) of the iteration problem (
0 ), i.e., built the main term of the asymptotics of solutions to the 

problem (18): 
2 20 0 0 0

0 11 2 1 2

0 2

( ) ( )0 1(0) ( (0) ) (0) ( (0) )
.

( ) ( )1 1 1 02 2

i i
t ty t h ti iz h i h y z h i h y

e e
z t h t
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