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_________________________________________________________________________________________________ 

ABSTRACT— Synchronization is characterized by the equality of state variables while evolving in time. Anti-

synchronization is categorized by the disappearance of the sum of relevant variables. This paper has studied and 

investigated the global chaos identical Synchronization and Anti-Synchronization (AS) of a new hyperchaotic system 

via Nonlinear Control. The sufficient conditions for accomplishing the synchronization and AS of two identical 

hyperchaotic systems are derived based on Lypunov Stability Theory. Numerical simulations and graphs are 

furnished to show the effectiveness of our proposed approach. All simulations have been done by using mathematica 

9. 
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1. INTRODUCTION 

The idea of synchronization was first studied by L. Pacora and T. Carroll [1] which is based on designing a coupling 

between the two systems such that the chaotic time evaluation becomes ideal and the output of the slave (response) 

system asymptotically follows the output of the master (drive) system. Since then the synchronization of chaotic 
dynamical systems have received a great deal of interest among scientists from almost all nonlinear sciences for more 

than last two decades [2] and so far a large number of synchronization techniques have been developed and applied 

successfully to synchronize two identical as well as nonidentical chaotic systems [3]. Among them, chaos 

synchronization using Nonlinear Active Control techniques have recently been widely accepted as the most efficient 

techniques used for both synchronization as well as anti-synchronization of hyperchaotic systems as no gain matrix or 

Lyapunov exponents are required for its execution [4]. 

Hyperchaotic system is generally defined as a chaotic system which has at least two positive Lyapunov 

exponent and the presence of more than one positive lyapunov exponent clearly enhances the security by generating more 

complex dynamics which can be used to improve the capacity, efficiency and security of chaotic communication 

systems. Due to these characteristics, it has potential applications in different scientific fields [5-7].  

The main objective of this paper is to study the global chaos synchronization and anti-synchronization of 
identical new hyperchaotic systems [8]. Based on Lyapunov stability theory [9] and using the approach in [4], a class of 

nonlinear control schemes will be designed to achieve the synchronization and anti-synchronization asymptotically 

globally. Numerical simulations and graphs will be furnished to show the effectiveness and advantages of our proposed 

approach. 

The rest of the paper is organized as follows: in section 2, we give the problem statement and the proposed 

methodology. In section 3, we discuss the chaos synchronization and anti-synchronization of new identical hyperchaotic 

systems. In section 4, numerical simulations are presented to endorse the effectiveness of our method and in section 5, 

the concluding remarks are then given. 

2. 2.  DESIGNING OF A NONLINEAR ACTIVE CONTROLLER 

Consider a drive and response systems arrangement for a chaotic system is described by the following differential 

equations: 

   1 1( )x M x G x     (Drive system)    (2.1) 

   2 2( )y M y G y       (Response system)        (2.2) 
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where  x, y ϵ Rn are the corresponding state vectors,
1 2, nM M R   are the matrices (n×n ) of system parameters and  

1 2, : n nG G R R  are the continuous nonlinear functions and ' ( )t  ' is a nonlinear state feedback controller yet to be 

design. 

If M1 = M2 and/or  1 2( ) ( )G G , then x and y are the states of two identical chaotic systems. 

If M1 ≠ M2 and/or  1 2( ) ( )G G , then x and y are the states of two different chaotic systems.  

The error dynamics for synchronization of chaotic systems (2.1) and (2.2) is described as, 

    2 1 2 1( ) ( ) ( )e M y M x G y G x t        (2.3) 

where,     i i ie y x     

 For the two non-identical chaotic systems without controller, ( ( ) 0i t  ), if the initial conditions, 

1 2 1 2( (0), (0),...., (0) (0), (0),....., (0))i i ni j j njx x x y y y , then the trajectories of the two chaotic systems will rapidly 

split from each other at the course of time and will become totally unsynchronized. Thus the synchronization problem is 

essentially to find a feedback controller ' 
1( ) nt R   ' such that, it stabilizes the error dynamics (2.3) for all initial 

conditions, i.e., if, 

   lim ( ) ( ) lim ( ) 0i i i
t t

y t x t e t
 

   ,    for all ei(0) ϵ Rn , 

then the two chaotic systems (2.1) and (2.2) are said to be synchronized.   

Let if we consider a candidate Lyapunov Error Function as: 

     ( ) TV t e Ae  

where the matrix A is a positive definite matrix [9]. It can be noticed that,  : n nV R R  is a positive definite function 

by construction. We further assume that the parameters of the drive and response systems are known and the states of 

both chaotic systems are measurable.  

 We may achieve the synchronization by selecting a non-linear controller 
1( ) nt R  to make ( ) TV e e Be   

be a positive definite matrix, then by Lyapunov Stability Theory [9], the states of the drive and response systems will be 

globally asymptotically synchronized. 

3. SYNCHRONIZATION VIA NONLINEAR ACTIVE CONTROL 

System Description: Liu Wen-Bo et. al., [8] proposed and studied a new continuous autonomous hyperchaotic system in 

which each equation in the system contains 2-term cross product and is described as:    

             

                                                                  

   
2

1

3

4

x x yz

y y xz w

z z xy

w w xz

 





 

  


    


   
   

      (3.1.1) 
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where , , , nx y z w R  are the state variables and 1 2 3 4, , , ,   and         are all positive real constant parameters 

with 1 2 3 42, 3, 1.5, 2, [0.4,3) and   1           . 

By linearization of system (3.1.1) at ( , , , ) (0,0,0,0)x y z w  , the eigenvalues are: 1 2  , 2 3   , 3 1.5     

and 4 2   . 

The chaotic system (3.1.1) exhibits a chaotic attractor when the parameter values are taken as: 
1 2  , 

2 3  , 

3 1.5  , 4 2  , 6 1.  and 1    .  

For the dynamical properties such as hyperchaotic behavior, bifurcation, single scroll, the 2-scroll and 4-scroll chaotic 

attractors etc. for the system (3.1.1), please see reference [8]. 

To achieve the identical synchronization of the hyperchaotic system (3.1.1), let us consider the drive-response systems 

configuration is described as: 

  

1 1 1 1

1 2 1 1 1 1

1 3 1 1 1

1

1 4 1 1 1

 

x x y z

y y x z w

z z x y

w w x z



 





  


    


   
   

   (Drive system)   (3.1.2) 

and 

  

2 2 2 2 1

2 2 2 2 2 2 2

2 3 2 2 2 3

2 2

1

4 2 2 4

x x y z

y y x z w

z z x y

w w x z

 

  

 

 

   


     


    
    

  (Response system)  (3.1.3) 

 where , , , n

i i i i x y z w R  for i =1,2 are the state variables of the corresponding drive and response systems, 

1 , 2 , 3 , 4  and   are system parameters and 
1

1 2 3 4( ) [ (t), (t), (t), (t)]T nt R        are the nonlinear 

controllers which is yet to be designed.  

The aim of this section is to determine the nonlinear controller '
1( ) nt R  ' such that the two identical hyperchaotic 

systems (3.2.2) and (3.2.3) are synchronize asymptotically globally. 

The synchronization error dynamics of equations (3.2.2) and (3.2.3) is defined as,     

             

  

2 2 1 1 1

2 2 2 4 2 2 1 1 2

3 3 3 2 2 1 1 3

4 4 4 2 2 1 4

1 1 1

1

)

( )

( )

( )

(e y z y z

e e e x z x z

e e

e

x y x y

e e x z x z



  











 

     

    

    

  







      (3.1.4) 

Thus the aim of this section is to synchronize two identical hyperchaotic systems (3.1.2) and (3.1.3) by designing such 

nonlinear feedback controllers that ensure the asymptotic stability of the error system (3.1.4). To achieve this goal, let us 

assume the following theorem.  
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Theorem 2. The two Chaotic Systems (3.1.2) and (3.1.3) will achieve asymptotically globally synchronization for all 

initial conditions 1 2 3 4 1 2 3 4( (0), (0), (0), (0) (0), (0), (0), (0))x x x x y y y y  with following control law: 

   

1 2 2 1 1

2 1 1 2 2

3 1 1 2 2

4 4 2 1

1 1

2 1

( ) )

( )

( )

( )

2 (

( )

t y z y z

t x z x z

t x y x y

t e x z

e

z x







 

 

 

  




 

   





     (3.1.5) 

Proof. Let us assume that the states of both systems   (3.1.2) and (3.1.3) are measurable and the parameters of the drive 

and response systems are known. Let us construct a Lyapunov error function candidate as, 

   ( ) TV t e Ae          (3.1.6) 

where   

1 0 0 0

0 2 0 0

0 0 0.5 0

0 0 0 2

A

 
 
 
 
 
 

is a positive definite function.  

Now the time derivative of the Lypunov Error Function is, 

 

1

22 2 2 2
1 2 3 41 2 3 4

3

4

2

3
( ) 2

0 0 0

0 0 0
3 2

0 0 0

0

0

20 0

T

k

k
V t k e k e k e k e e e

k

k

 
 
 


   



 

 



  

Therefore,  ( ) TV t e Be    and 

4 0 0 0

0 6 0 0

0 0 1.5 0

0 0 0 4

B

 
 
 
 
 
 

 which is also a positive definite matrix. 

Hence based on Lyapunov Stability Theory [9], the origin of the error dynamics converge to the origin asymptotically. 

Thus drive and response systems (3.1.2) and (3.1.3) are asymptotically globally synchronized. 
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Fig 1: Time Series of x1 & x2 During Synchrnization
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Fig 2: Time Series of y1 & y2 During Synchrnization
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Fig 3: Time Series of z1 & z2 During Synchrnization
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Fig 4: Time Series of w1 & w2 During Synchrnization
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Fig 5: Time Series of errors During Synchronization
 

 

Anti-Synchronization via Nonlinear Active Control 

In this section, we present the purpose of the study which is to achieve stable anti-synchronization between two 

identical hyperchaotic systems [8] by using Nonlinear Active Control.  To achieve this goal, let us consider the drive-

response systems arrangement for the identical anti-synchronization of a new hyperchaotic system [8] is described as: 

  

1 1 1 1

1 2 1 1 1 1

1 3 1 1 1

1

1 4 1 1 1

 

x x y z

y y x z w

z z x y

w w x z



 





  


    


   
   

    (Drive system)  (3.2.1) 

and 
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2 2 2 2 1

2 2 2 2 2 2 2

2 3 2 2 2 3

1

2 4 2 2 2 4

   

x x y z

y y x z w

z z x y

w w x z



  

 

 

   


     


    
    

  (Response System)  (3.2.2) 

For chaotic Anti-Synchronization of the two drive-response systems, the error dynamics can be described as, 

1 1 2

2 1 2

3 1 2

4 1 2

e x x

e y y

e z z

e w w

  


  


  
  

 

Thus from systems of equations (3.2.1) and (3.2.2), the error dynamics can be described as:   

       

1 1 2 2 1

1 2 2 4 2 2 1 1 2

3 3 3 2 2 1 1 3

4 4 4 2 2 1 1 4

1 1 1 )

( )
  

( )

(

( )

y z y z

e e e x z x z

e e x y x

e e

y

e e x z x z



  

 

 

  

     



 

   

    









     (3.2.3) 

Let us define the Nonlinear Controller 
1

1 2 3 4( ) [ ( ), ( ), ( ), ( )]T nt t t t t R        as, 

   

1 1 1 2 2

2 4 2 2 1 1

3 2 2

1

1 1

4 2 1 1

1

2

( ) 2

( ) ( )

( ) ( )

( ) ( )

t ye z y z

t e x z x z

t x y x y

t x z x z



 





   


    




   
  

      (3.2.4) 

Replacing equations (3.2.4) in (3.2.3), we have,    

    

1 1

1 2 2

3 3 3

4 4

1

4

 
e e

e

e e

e

e

e









 

 

  


 






       (3.2.5) 

Let us construct a Lyapunov Error Function Candidate as: 

   
2 2 2 2

1 2 3 4

1
( ) ( )

2
V t e e e e           (3.2.6) 

Now the time derivative of the Lypunov Error Function is, 
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1

22 2 2 2
1 2 3 41 2 3 4
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V t k e k e k e k e e e
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 
 
 
 


  











  

Therefore,  ( ) TV t e Be    and 

2 0 0 0

0 3 0 0

0 0 1.5 0

0 0 0 2

B

 
 
 
 
 
 

 which is also a positive definite matrix. 

Hence based on Lyapunov Stability Theory [9], the origin of the error dynamics converge to the origin asymptotically. 

Thus drive and response systems (3.2.1) and (3.2.2) are asymptotically globally anti-synchronized. 
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Fig 6: Time Seriesof x1 & x2 During AS
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Fig 7: Time Seriesof y1 & y2 During AS
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Fig 8: Time Seriesof z1 & z2 During AS
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Fig 9: Time Seriesof w1 & w2 During AS
 

ex

ey

ez

ew

0 1 2 3 4

0

2

4

6

8
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4. NUMERICAL SIMULATIONS 

  For the hyperchaotic System [8], the parameter values are taken as 1 2  , 2 3  , 3 1.5  , 4 2  , 6 1.   and 

1    together with initial conditions: 1 1 1 1( (0), (0), (0), (0)) (5,7,6 2  , )x y z w   and 

2 2 2 2( (0), (0), (0), (0)) (2,4,2,4)x y z w  , we have plotted the time series of states variables for synchronization (Fig 

1-4) as well as for anti-synchronization (Fig 6-9) whereas figures 5 & 10 depict the time series of the errors for 

synchronization & anti-synchronization respectively. Lastly, in fig 11, we have drawn the graphs of the derivatives of the 

Lyapunov Errors Functions for both the cases in order to show the stability.  

5. SUMMARY AND CONCLUSION 

In this paper, global chaos synchronization and anti-synchronization of an identical new hyperchaotic system 

have been studied. Based on Lyapunov Stability Theory and using the Nonlinear Active Control technique, a class of 

nonlinear controllers is designed to achieve the global stability of the error dynamics. Since the Lyapunov exponents or 

gain matrix are not required for numerical simulations, the Nonlinear Active Control Technique is an effective algorithm 

to synchronized and anti-synchronized two identical hyperchaotic systems. 
In this study, using the Nonlinear Active Control Technique, it has been shown that the proposed approaches 

have exceptional transient performances and that analytically as well as graphically the synchronization and anti-

synchronization are asymptotically globally stable. In this study, it can be observed that synchronization is working faster 

than anti-synchronization. Results are presented in graphical forms with time history (figures 1-11). Numerical 

simulations are also given to validate the results. Figures 5 shows the synchronization errors figure 10 shows the anti-

synchronization errors for two identical hyperchaotic systems [8] respectively which shows that the proposed controllers 

are efficient with enough transient speed. Figure 11 show the derivatives of Lyapunov Error functions of identical 

synchronization and identical anti-synchronization respectively of the systems which shows that the error systems 

(figures 5 and 10) are feedback stabilized. Numerical simulations are also given to validate the results. 
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