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Abstract 

Unmanned Aerial Vehicles, UAVs, gained an important role in modern military and civilian applications. De-

velopments in UAVs technology improve its performance and maneuverability with acceptable cost. Elliptic 

airfoil had been widely used in the development of Rotor/Wing subsonic aircraft. The present work aims to in-

vestigate the effect of various elliptic airfoil parameters, such as Reynolds number, angle of attack and airfoil 

thickness, on aerodynamic behavior using two-dimensional computational study. The computational results 

were validated by experimental results. Angles of attack was evaluated from 0° to 18° in order to analyze aero-

dynamic characteristics up to stall condition, while Reynolds number was evaluated at values of 1×10⁵, 3×10
5
, 

2×10
6
, and 8×10

6
, to cover the range of rotary and fixed wing flight conditions. Thickness ratio was ranged from 

5% to 25% to include the UAVs airfoil thicknesses so that choice best thickness gets maximum lift to drag ratio. 

In addition, the maximum thicknesses location was evaluated for a range of 30% to 70% to get suitable location 

gets maximum left to drag ratio. The ANSYS-Fluent software was used with Spalart-Allmaras turbulence mod-

el, and found that the maximum lift to drag ratio which improve the UAV capability in this study is at 

Re=2×10
6
, angle of attack at 8°, max thickness ratio of (0.1chord) located at (0.3chord).  

Keywords: UAV; Elliptic airfoil; Aerodynamics. 

 

1 Introduction 
In recent times, UAVs have witnessed remarkable development as a result of increased confidence in 

the military and civilian applications. An unmanned vehicle with vertical take-off and landing (VTOL) ability 

represents one example of an interest area, which has possibility for important research innovation. A canard 

rotor/wing (CRW) is a UAV that falls under this category. CRWs can hover and fly at low speeds like a conven-

tional helicopter and can also fly at high speeds like a fixed wing aircraft with the additional capability of VTOL 

Pandya and Aftosmis(2001)This specific ability of CRWs to transform into various flight modes gives it im-

portance for military and civilian applications and if it have an elliptical wing, it will do this property efficiently, 

and as a result of that importance of VTOL UAVs and elliptical wings, computational and experimental investi-

gations have been carried out by many researchers.  

The two pair of elliptical and circular shaped winglets with the wing of the aircraft model was de-

scribed by Hossain et al. (2007) for the reduction of induced drag purpose without increasing the span of the 

aircraft. Aerodynamic characteristics for the aircraft model with and without winglet having wing with NACA 

section No. 65-3-218 has been studied using a subsonic wind tunnel of 1m × 1m rectangular test section at the 

Reynolds numbers of 0.17×10
6
, 0.21×10

6
 and 0.25×10

6
. Elliptical winglet at 60⁰ incidence angle has the better 

performance giving about 6% increase in lift curve slope and in that way produces more lift as compared to oth-

er configurations for the maximum Reynolds number. On the other hand Saharudin. (2016) presented the de-

sign of a tilting rotor unmanned aerial vehicle (UAV). The main objective for his study was to do structural 

analysis to size the UAV's wing section. Solidworks and Catia V5 software have been implemented to design 

and simulation for this research. The load distribution was assumed to be elliptical and the fixed support is at the 

edge of the wing. As a result of this study it was found that the wing is safe to use in the UAV after doing struc-

tural analysis. After doing simulation by using Solidworks 2014 software, it shows that the bending stress is 

5.42 MPa. From manual calculation, the theoretical bending stress is found to be 4.26 MPa. There is a small 

difference with approximately 10% between both values.  Hwang et al. (2007), made a cyclocopter propelled 

by the cycloidal blade system. It is a new concept of VTOL vehicle which has excellent hovering characteristics 

and low speed forward flight capability. Rotor blades of unmanned cyclocopter with 4 rotors with 16 blades 

were designed and structural analysis was carried out to reduce drag of each blade and get the high performance 

for the vehicle. In this study, elliptic airfoil blade was adopted based on the Prandtl’s classical lifting line theory 

to minimize the induced drag hence reduce the required power of cyclocopter rotor system.The geometric pa-

rameters of cyclocopter rotor blade system were designed through 2D-CFD analysis. The same airfoil and blade 

surface area were used for 2D and 3D model. For efficient parametric study the commercial software, STAR-

CD and setup of moving mesh method was adopted to simulate the rotation of blades which have periodic pitch 

angle variation. From this study found that elliptic airfoil achieved low drag, high lift, and maximum displace-

ment and stress of blade were acceptable values. A novel (Unmanned Aerial System) UAS presented by 

Trancossi et al. (2015), aims to give excellent low speed operations and VSTOL performance. This UAS con-

cept has been named MURALS (acronym of multifunctional unmanned reconnaissance aircraft for low-speed 

and STOL operation). The main objective of this study was to obtain low speed flight, very short takeoff and 
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landing, and a control capability by mean of two mobile surfaces in the front canard, which allow changing the 

pitch angle, and allows full control of the UAV in combination with an ACHEON variable angle of thrust pro-

pulsion system. ACHEON project is a new propulsion model specifically conceived to produce a deflection of a 

synthetic jet without moving parts. A wing section of the series NACA 5 Digit has been selected. The results 

show that the designed aircraft meets the previous objectives. Rabbey et al. (2013) participated in an interna-

tional competition SAE aero design west, with a unique design of such an UAV. As per competition require-

ments empty weight of the UAV should be less than 2 lb. and fly with payload as heavy as possible for good 

scoring. The goal of the project was to develop and show a practical method of building a unique design UAV 

and also take off, cruise and land it within the specified area given in the competition. The model of the UAV 

was conducted using Solid Works and tested in wind tunnel. From the test it seen that there is a region of high 

pressure at the leading edge (stagnation point) and region of low pressure on the upper surface of airfoil and the 

max CL for NACA 4412 in the wind testing approximately equals the result of in CFD. Aerodynamic efficiency 

during flight for the UAV was achieved, and the theoretical design converted into a real aircraft with prelimi-

nary design. Various performances for the wings designed with a winglet and without a winglet were investigat-

ed by Salahuddin et al. (2013); in their study two different wings were used: an elliptical wing and a short 

wing. NACA 2412 was used in both cases. The models’ geometry was created in the CATIA V5 R19 Software. 

One of the objectives of this work was to reduce the induced drag formed on wing during the flight operation, 

the analysis part was done by using the ANSYS Software, The analysis was done by measuring and comparing 

various aerodynamics characteristics which include drag coefficient CD, lift coefficient CL, lift-to-drag ratio L/D, 

and comparison for affect a winglet on the wing. Thus, after this comparison, they found that the drag decreased 

and the performance of the aircraft increased with achieved the better efficiency by using elliptic wing with 

winglet. Computational investigation of inviscid flow over an airfoil was presented by Kandwal and Singh 

(2012), through experiments using wind tunnel the drag and lift forces were determined. In this work, a compu-

tational method was used to deduce the lift and drag properties. The study was done on air flow over a two-

dimensional NACA 4412 Airfoil using ANSYS-Fluent to obtain the surface pressure distribution from which 

drag and lift were calculated using integral equations of pressure over finite surface areas. Results show the val-

ue of lift coefficient calculated computationally is 0.654 compared to the experimental value which is 0.649 for 

invicid flow over the airfoil. While the value of drag coefficient is 0.001 calculate computationally and 0.007 

experimentally. Therefore, the CFD simulation results show a good agreement with those of the experiments. As 

a result, simulation can be considered as a dependable choice to experimental method in determining drag and 

lift. A set of wings by parametric variation on wing sweep had been constructed. The CL, CD and Cm were inves-

tigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6 model of BWB at 

Mach 0.1. Pressure variation, Mach number contours and turbulence area was observed from CFD analysis. In 

investigation, Swept wing was modeled in ansys using NACA 66-012 airfoil. Insertion of key points following 

the coordinates of NACA 66-012 airfoil at different sections of wing was the first step of modeling. Then, areas 

were created using these airfoils and therefore a single solid wing was modeled by adding up these areas. Re-

sults for lift, drag and pitching moment were obtained from wind tunnel and CFD, therefore compared and re-

sults show a good agreement. In this investigation so that delay flow separation had been recommended chang-

ing the airfoil of the wing for low speeds to improve the wing and/or increase the surface area of the wing in 

order to generate high lift, or twisting the wing Syed et al.( 2011). The vortex generator is one of the techniques 

that have been used to control flow separation on a number of aircraft in recent years.in this study investigation 

about the effects of passive vortex generators (VGs) on Aludra unmanned aerial vehicle (UAV) aerodynamic 

characteristics had been done, By attached VGs on Aludra UAV’s wing in Both experimental and numerical 

study. The flow measurements are made at various angles of attack by using 3-axis component balance system. 

In the numerical investigation, the Reynolds-Averaged Navier-Stokes (RANS) code FLUENT 6.3TM was used 

in the simulations with fully structured mesh with Spalart-Allmaras (S-A) turbulence model. The comparison 

between the experimental and numerical results shows an acceptable agreement. The parametric study shows 

that higher maximum lift coefficient was achieved when the VGs were placed nearer to the separation point  

ZHEN et al.(2011).Analysis for the two-dimensional subsonic flow over 4-digit airfoil NACA0012 at various 

angles of attack and at a Reynolds number of 3×10
6
 was presented by C. Eleni et al .(2012) ,by solving the 

steady-state governing equations of continuity and momentum conservation combined with one of three turbu-

lence models [Spalart-Allmaras, Realizable, k-Ɛ and k-Ѡ shear stress transport (SST)] the flow was obtained, 

so that made validation of these models through the comparison of the predictions and experimental measure-

ments for the selected airfoil. The object of the work was to show the behavior of the airfoil at these conditions 

and to found a confirmed solution method. The computational domain was collected of 80000 cells appeared in 

a structured way. Calculations were done for constant air velocity changing only the angle of attack for every 

turbulence model tested. This work highlighted two areas in computational fluid dynamics (CFD) that require 

further investigation: transition point prediction and turbulence modeling. The laminar to turbulent transition 

point was modeled in order to get accurate results for the drag coefficient at various Reynolds numbers. The 
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most suitable turbulence model for these simulations was the k-Ѡ SST two-equation model, because it had a 

good agreement with the experimental data. 

Experimental and CFD analysis of airfoil at low Reynolds number presented by Sagat et al( 2012).The 

determination of lift and drag of airfoil from wind tunnel measurements was discussed for incompressible flow. 

Calculated the upper and lower surface pressure and velocity of an airfoil is fundamental for calculating the 

forces on it. Analysis of the airfoil done at low Reynolds no, different angle of attack from 0⁰ to 20⁰and at max-

imum velocity 15 m/s. then comparing experimental results and CFD results. The coefficient of pressure was 

analyzed in the upper and lower surface of the airfoil for the angle of attack varies from 0⁰ to 10⁰. The pressure 

on the lower surface of the airfoil was greater than that of the incoming flow stream and as a result of that it 

effectively pushes the airfoil upward, normal to the incoming flow stream. On the other hand, the components of 

the pressure distribution parallel to the incoming flow stream tend to slow the velocity of the incoming flow 

relative to the airfoil, as do the viscous stresses. The coefficient of lift and coefficient of drag of an airfoil was 

depends upon the pressure distribution and velocity distribution of an airfoil. The analysis of the two dimension-

al subsonic flow over a NACA 0012 airfoil at various angles of attack and operating at a Reynolds number of 

3(10)
6
 had been presented. And the CFD simulation results show close agreement with those of the experiments. 

From the CFD analysis of the flow over NACA 0012 air foil they found that at the zero degree of AOA there 

was no lift force generated and if they want to increase amount of lift force and value of lift coefficient, they had 

to increase the value of AOA. By doing that drag coefficient and drag force also increased but the amount of 

increment in drag force and drag coefficient was quite lower compare to lift force. S. Patel et al.( 2014). 

And so from this report and previous studies we have been obtained the drag and lift forces using CFD 

which can also be determined through experiments using wind tunnel testing. But In experimental setup, the 

design model has to be placed in the test section and this process is hard and cost more than CFD techniques. So 

the study had been gone through analytical method then it can be validated by experimental testing.  

All of the above shows that there is a convergence of results between experiments and computational 

methods, thus, the computational studies prove more effective. Also from previous studies we can get the steps 

required for doing investigations to obtain the max lift to drag ratio, and subsequently getting better best per-

formance of an unmanned aerial vehicles. 

Finally outcome from the UAVs survey and the literature study into Rotor/Wing research and devel-

opment has shown that the CRW-UAV concept is a unique innovative solution for a high-speed unmanned air-

craft with vertical takeoff and landing capabilities. Greater understanding of elliptic airfoils could be obtained 

by utilizing CFD flow solvers to conduct detailed analysis of parameters which have significant effects on aero-

dynamic performance. Detailed parametric analyses of elliptic airfoils would also aid in studying aerodynamic 

performance in rotary and fixed-wing flight modes. Therefore, the current study is carried out to understanding 

of elliptic airfoil at different operating parameters to achieve maximum lift to drag ratio and be employed in the 

design and development of rotor/wing unmanned aerial vehicles. 

2 Computational Model 

Computational fluid dynamics, CFD, is a branch of fluid mechanics using numerical analysis and algo-

rithms to solve and analyze problems. When using CFD analysis, it is easy to discover unexpected mistakes 

which can significantly change the flow field solutions. By comparing results produced from CFD analysis with 

experimental test results, an analyst can validate their processes and methodology. 

Elliptic airfoils possess a unique characteristic, in that, the blunt trailing edge causes flow separation 

and vortex shedding in the flow field aft of the airfoil, even at low angles of attack, as opposed to conventional 

airfoils which have a sharp trailing edge. Now that vast improvements have been made in the development of 

computational flow solving, complex numerical algorithms may be implemented on computational grids. These 

improvements allow for in depth parametric studies to be conducted at a reasonable cost and time. The computa-

tional domain and typical grids considered in this study are shown in Figure (1). Commercial ANSYS-Fluent is 

selected during the current study to apply the over set grid approach for the structured grid Navier-Stokes meth-

od to analyze the aerodynamic performance of a two-dimensional wing cross-section. Analyzing the aerody-

namic performance of an airfoil using CFD involves two main processes: grid generation and flow solving. In 

order to meet the flow solver requirements of simulating a flow field about an elliptic airfoil, an available flow 

solver which employs the overset-structured grid, Navier-Stokes solution method must be used to carry out the 

analysis. This flow solving code uses time accurate, Reynolds-Averaged Navier Stokes (RANS) equations. The 

first step was to create a 2D- surface of the elliptic airfoil. Airfoil surface definition was based upon the 0.16 x 

chord thickness elliptic airfoil studied by Kwonand and Park( 2005), this consisted of a two dimensional el-

lipse, oriented in the XY-plane, which had a chord length of one unit in the positive X-axis and a maximum 

thickness of 0.16 units in the Y-axis located at one-half of the chord length along the X-axis, as shown in Figure 

(1.a). From this surface definition, a surface grid of 250 cells. This point distribution was used so that many 
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points would be collected in areas of large curvature, where the largest flow gradients will typically exist, as 

shown in Figure (1.b).  

3 Model Validation 

In order to ensure the accuracy of computational results, Mesh independent study, turbulence models 

independent study and validation with the experimental data are performed. In the current study the computa-

tional domain is validated by comparing the computational results obtained for a symmetrical, 16% thick elliptic 

airfoil at a Reynolds number of 3×10
5
 with experimental results conducted by Kwonand and Park( 2005), as 

indicated in Figures (2 and 3). Figures (2 and 3) indicate the investigation of validation combined with mesh 

independent study Figure (2), as well as turbulence model independent study Figure (3). The airfoil surface 

pressure coefficient distribution is used as a key parameter for these studies at AOA= 0⁰, 2⁰, 4⁰, 6⁰, and 8˚. In 

mesh independent study, four different mesh sizes are tested at AOA=6⁰, V =25 m/s and thickness ratio =0.16 x 

chord. The results of pressure coefficient distribution over top and bottom airfoil surfaces for the four meshes 

are effectively grid independent as shown in Figure (2). In addition, a good agreement between the computa-

tional and experimental results is achieved. Therefore, mesh 3 (111250 elements), is used for the current inves-

tigation to get both good solution accuracy and low computational time.  

Moreover, the sensitivity of the computational results to the turbulence models is investigated using 

four different turbulence models such as standard k-Ɛ, RNG k-Ɛ, Realizes k-Ɛ and SA models at AOA=0⁰, 2⁰, 
4⁰, 6⁰,and8˚ Re =3 x 10

5
 and thickness ratio =0.16 x chord. The results of the pressure coefficient distribution 

for all turbulence models and entire range of AOA are very close to each other as shown in Figure (3). The SA 

model is selected to be used for the current investigation due to its accuracy with the experimental results as 

indicated in Figures (3.c and 3.d). 

4 Boundary Conditions  

(BCs) specify the flow variables on the boundaries of the chosen physical model. One of the most chal-

lenging an accurate flow field is specification of boundary conditions. In order to complete a flow solving itera-

tion; a boundary condition type must be specified for each grid point on the boundary of the domain. Boundary 

condition types used in this case are (velocity-inlet, pressure-outlet, viscous adiabatic wall, free-

stream/characteristic condition, and plane symmetry). Velocity inlet boundary conditions are used to define the 

flow velocity, this type of boundary conditions is only suitable for incompressible flows as in this study. A con-

stant, uniform, normal to the boundary flow velocity of 25 m/s was set at the inlet face of the computational 

domain. Pressure-outlet boundary condition is set at the outlet face of the computational domain with a specific 

static pressure value. In the present simulation, static pressure was set to be normal to the boundary and to have 

a zero gauge pressure which means that the outlet face was considered to be opened to the atmosphere. The vis-

cous adiabatic wall boundary condition is applied along the surface of the airfoil. The free stream/characteristic 

condition is applied to the far-field boundary of the domain. Finally these boundary conditions have been found 

to work most effectively for flow field simulation about an elliptic airfoil. 

5 Turbulence Model 

Turbulence models can have a significant influence over flow behavior; there are five types of different 

turbulence models for predicting turbulent flow, including the Spalart Allmaras (SA) model as i mentioned pre-

viously. This model is relatively new, and has achieved much success in accurately predicting free-shear regions 

(Introductory FLUENT Notes , 2006). For this reason, the (SA) model was used in this study. The SA model is 

a relatively simple one-equation model that solves a modeled transport equation for turbulent viscosity. It was 

designed specifically for aerospace applications. It is also gaining popularity for turbo machinery applications. 

In its original form, SA model is effectively a low Reynolds-number model, requiring the viscous-affected re-

gion of the boundary layer to be properly resolved in Fluent.  

The transported variable in the SA model  ̃ is identical to the turbulent kinematic viscosity except in 

the near-wall (viscous affected) region. The transport equation is given by 

  ̃

  
    *

 

   
 {(     ̃ )

  ̃

   
 }       (

  ̃

   
 )
 

+       ̃ (1) 

Where    is the production of turbulent viscosity and    is the destruction of turbulent viscosity that 

occurs in the near-wall region due to wall blocking and viscous damping.     are constants and   is the molecu-

lar kinematic viscosity (m
2
/s),   ̃ is a user-defined source term.  

6 Numerical and Visual Analysis 

Numerical analysis can be done with simple computer programs; while visual analysis must be con-

ducted using more strong software packages .The primary form of numerical analysis employed in this study is 

investigation into pressure and force coefficients. Pressure coefficients can be easily calculated from a flow field 

solution file using fluent. Fluent can then be used to plot the pressure coefficients over the top and bottom sur-

faces of the airfoil. These plots can be very useful in analyzing and comparing the pressure distributions occur-

ring along the surface of an airfoil for varying flow parameters.  
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Visual analysis is needed to gain an understanding of boundary layer separation and trailing edge vor-

tex structures. Using visual analysis, one can transform quantitative data into a physical representation of the 

flow field. The three main plotting techniques employed in this study include: pressure contour plots, velocity 

contour plots, and pressure coefficient. 

7 Governing Equations  

The equations that govern the motions of fluid are the Navier-Stokes equations, which are the funda-

mental principles of fluid dynamics. In this study the modeling is carried out by solving the governing equations 

for a turbulent flow using fluent code. The governing equations are solved by the two dimensional approach and 

double-precision solver; option is accepted for all calculations. The following governing equations for flow are 

solved using computational fluid dynamics (CFD) commercial code, Fluent. The continuity and momentum 

equations are used to calculate velocity vector (Introductory FLUENT Notes , 2006) 

 Continuity equation 

 

   
(   )      (2) 

Where    is the component of the velocity vector (m/s) 

Momentum  

 

   
(     )   

  

   
 
 

   
( 
   

   
) (3) 

Where   is the density of the fluid (kg/m3), p is the pressure (Pa) and   is the fluid viscosity (kg/m.s) 

and i, j   {1, 2}. 

8 Results and Discussions 

The optimum design of the elliptic wing is the key parameter of the current study to suite the applica-

tion of UAVs. This study investigates the characteristics of elliptic airfoils for a range of parameters. These pa-

rameters include: Reynolds number, thickness ratio, angle of attack, and location of maximum thickness for 

elliptic wing at max angles. 

The Reynolds number was evaluated at values of 1×10⁵, 3 x 10⁵, 2 x 10⁶, and 8 x 10⁶. This range was 

chosen to identify its effect on aerodynamic performance of rotary and fixed wing flight conditions. Thickness 

ratio was ranged between5% and 25%. These airfoil thicknesses are used on UAVs application. Also, angle of 

attack was evaluated in a wide range from 0° to18° in order to analyze aerodynamic characteristics up to stall 

condition. Location of maximum thickness for elliptic wing was evaluated at 30%, 40%, 50%, 60%, and 70% of 

the chord from the leading edge. The maximum thickness location is investigated at maximum angle of attack to 

achieve maximum lift to drag ratio.  

All of these parameters allow the current study to explore the effects of vortex shedding aft of the air-

foil on lift and drag forces. By using the commercial code [ansys-fluent], the continuity, and momentum (eqs. 2 

to 3) can be solved and all force (i.e. lift and drag), velocity, and pressure coefficient can be obtained and dis-

played. Also, visualizations of flow developments including flow separation, vortex separation, and vortex 

shedding downstream of the airfoil are investigated. 

9 Reynolds number effect on airfoil characteristics. 

In order to better understand the aerodynamic characteristics of elliptic airfoils, the influence of Reyn-

olds number at angle of attack =8° on airfoil lift characteristics is evaluated. The canard rotor wing UAV 

would have a Reynolds number of approximately 2 x 10
6
 during fixed wing flight while flying close to transi-

tion speed Kwonand and Park( 2005).The Reynolds number observed by the CRW UAV at maximum flight 

speed would be approximately 8x10
6
 Hui Hu and Yang( 2008), Therefore; the influence study covered a Reyn-

olds number ranged between 1×10
5
 and 8 x 10

6
on airfoil characteristics the results in Figures (4, 5 and 6). The 

relation between lift coefficient (CL) and Reynolds number (Re) is depicted in Figure (4). The maximum lift 

coefficient =0.73 achieved at Re=1×10⁵ and decreased with Reynolds number increase so, at Re=2 x 10
6
 the lift 

coefficient reaches to its minimum value of 0.53 and continues constant when Re> 2x 10⁶. The relation between 

drag coefficient, CD, and Reynolds number (Re) is shown in Figure (5) at angle of attack α=8°. The maximum 

drag coefficient=0.045 occurred at Re=1×0⁵ then slightly decreases with Reynolds number increase accordingly 

the minimum drag coefficient of 0.024 is occurred at Re= 2 x 10
6
 and continues constant at this value for Re>2 

x 10
6
. The overall performance of an airfoil is better understood by observing the influence of Reynolds number 

on both lift and drag coefficient using lift to drag ratio (CL/CD) as shown in Figure(6). The maximum lift to drag 

ratio of 21.6 occurs at Reynolds number of 2 x 10
6
. 
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9.1 Influence of thickness ratio on airfoil characteristics  

The influence of thickness ratio (Tr), on airfoil is another important parameter that should be evaluated. 

Airfoil lift performance of an elliptic airfoil is evaluated at angle of attack, α=8°, and thickness ratios of 5%, 

10%, 16%, 20%, and 25% of chord. These thickness ratios are chosen to show changes in aerodynamic perfor-

mance for airfoils that could be used for different types of UAV applications. As indicated in Figure (7), it is 

observed that the lift coefficient decreases with increasing thickness. The maximum value of the lift coefficient 

occurs at 5% and 10% thickness ratio. Above this thickness ratio, lift curve begins to decrease. Figure (8) shows 

the variation of drag coefficient with thickness ratios ranged from 5% to 25% at angle of attack α=8° and 

Re=2×10
6
. The drag decreases with increasing thickness ratio to a minimum value of 0.055 at thickness ratio of 

10% and increases again to its maximum value of 0.068. In addition; Figure (9) shows the dependence of lift to 

drag ratio on thickness ratio between 5% and 25% and the greatest lift to drag ratio of 7.6 is found at thickness 

ratio of 10%.  

9.3 Influence maximum thickness location on airfoil Characteristics 

The effect of maximum thickness location at (x/c = 30%, 40%, 50%, 60%, and 70%) and angle of at-

tack α=8⁰ on airfoil lift characteristics is studied as shown in Figure (10). It is observed that the lift coefficient 

decreases when the maximum thickness location is near to the airfoil tail. On contrary, the drag coefficient in-

creases due to high and early separation as indicated in Figure (11). The effect of maximum thickness location 

on the Lift and drag ratio is represented in Figure (12), the greatest lift to drag ratio= 7.98 is observed for a 

thickness location =30%. 

10 Conclusions 

In this parametric study, the effects of Reynolds number, thickness ratio, thickness location and attack 

angle on the aerodynamic characteristics of an elliptic airfoil were investigated. Following are the main conclu-

sions drawn from this investigation:  

 A maximum error of about 4% between the model and experimental validation results was achieved.  

 Maximum lift to drag ratio of 21.6 occurs at Reynolds number of 2×10
6
 and slightly decreased with in-

creasing Reynolds number to its minimum value of 16.02at Reynolds number of1×10
5
. 

 The thickness ratio has a significant effect on lift/drag ratio. Increasing thickness ratio leads to increase 

the CL/CD ratio to its maximum value of 7.6 at 10% thickness ratio. With higher thickness ratio, CL/CD 

ratio decreased continuously. 

 Thickness location ranged from 30% to 70% of chord has a great influence on CL/CD ratio, where 

CL/CD ratio decreases when the maximum thickness located towards the airfoil tail. Therefore, the max-

imum CL/CD=7.98 is occurred at a thickness location =30%, and the minimum CL/CD=6.92 at thickness 

location=70% 

 The optimum parameter values to get the best lift and drag were found to be angle of attack 8°, Reyn-

olds number of 2×10⁶, thickness ratio of 10% and thickness location 30%. 

 
 

(a) The computational domain elliptical airfoil geome-

try at t/c=16% 

(b) Mesh generation for elliptic airfoil at t/c=16% 

Figure 1: Geometry and mesh generation for elliptical airfoil at t/c=16% 
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Figure 2: Mesh independence study at α=0⁰at four levels of mesh 

 
 

(a): Pressure coefficient at α=0⁰ for different turbu-

lence models 

(b): Pressure coefficient at α=2⁰ for different turbulence 

models 

 

  

(c): Pressure coefficient at α=4⁰ for different turbulence 

models 

(d): Pressure coefficient at α=6⁰ for different turbu-

lence models 

 

(e):Pressure coefficient at α=8⁰ for different turbulence 
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models 

Figure 3: The pressure coefficients at different AOA using different turbulence models. 

 
 

Figure 4: The effect of Reynolds number on airfoil lift coefficient Figure 5: The effect of Reynolds number on airfoil drag coefficient 

  
Figure 6: The effect of Reynolds number on airfoil lift to drag ratio Figure 7: The effect of airfoil thickness ratio on lift coefficient. 

 
 

Figure 8: The effect of airfoil thickness ratio on drag coefficient. Figure 9: The effect of airfoil thickness ratio on lift to drag ratio. 
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Figure 10: The influence of maximum thickness loca-

tion on airfoil lift coefficient. 

Figure 11: The influence of maximum thickness lo-

cation on airfoil drag coefficient. 

 

Figure 12: Influence of thickness locations on airfoil max lift/drag ratio characteristics. 

Nomenclature 
CP  Pressure Coefficient (-) 

CD  Drag Coefficient (-) 

CL  Lift Coefficient (-) 

L/D  Lift to drag coefficient (-) 

T/C  thickness location (-) 

TR  thickness ratio (-) 

AOA  angle of attack (-) 
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