
Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 38

Comparing GUI Automation Testing Tools for Dynamic Web

Applications

Samer Al-Zain1, Derar Eleyan2 and Yousef Hassouneh3

 1 Lecturer, Birzeit University

(Birzeit, Palestine)

szain@birzeit.edu

2 Assistant Professor, Birzeit University

(Birzeit, Palestine)

deleyan@birzeit.edu

3Assistant Professor, Birzeit University

(Birzeit, Palestine)

yhassouneh@birzeit.edu

ABSTRACT— Automating software testing helps agile teams to release production-ready software as often as

needed. There are so many automation testing tools with record/playback features available for test teams to automate

functional tests against web applications. However, choosing the right tool can be vital to project success. This paper

presents a survey on automation testing tools for web applications. These tools have been chosen from both open-

source, namely Selenium and Sahi, and from commercial tools such as TestComplete and Microsoft Visual Studio

2010. These tools were compared based on the effectiveness of recorder/playback tools, handling of page waits, cross

browser compatibility, technical support, and the number of different techniques available to programmatically locate

elements on web pages. Results show that free and simple tools can be more powerful and time saving, compared to

commercially sophisticated and expensive tools. This paper also summarizes best practices and guidelines when

adopting automated GUI functional tests against web applications, drawing a road-map for test engineers to follow.

Keywords— Web application, GUI, Software testing, Agile testing.

1. INTRODUCTION

Web applications are the most popular among software classes. This is partly due to the ubiquity and convenient

use of web browsers as thin clients, as well as, the ability for web applications to support cross-platform

compatibility. Another reason for its popularity is the ease of updating and maintenance: no need to distribute and

install new versions on client machines, updates are only installed on servers.

 This popularity gave web applications an enormous boost, allowing them to support various activities in

business, social, medical, educational and government functions [1]. Social networks at the Internet have turned the

world into a small village. Web portals on the other hand operate as an Internet gateway, offering diverse services

such as search engines, news, weather, stock prices, entertainment and email. However, recent studies and reports

show that web applications are not as functionally dependable as they should be. These studies showed that 29 of 40

leading e-commerce sites as well as 28 of 41 government sites showed evidence of failure in functional requirements

when used by web users [1][2][3].

Testing software through the GUI is extremely important, and should be given the right amount of time and

effort during software development. Brooks et al [4] identified that thousands of real faults have been detected by

GUI testing and proved that a large portion of those faults belong to the underlying business logic of the application

rather than the GUI itself [5]. Additionally, [6] argues that Software testing should constitute 30 – 40% of total

project time and effort in order to deliver software with acceptable quality.

Software automated testing is an integral and important part of software development methods. Among those

methods, agile development and testing methods are expanding and are becoming more popular recently. Many

modern software development teams apply agile software development methods such as SCRUM, XP (Extreme

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 39

Programming), Crystal, FDD or DSDM to name a few. In these methods, teams need to release production-ready

software every sprint, which lasts between 1 to 4 weeks.

In order for test engineers to keep pace with development, they need to employ automation testing. In fact,

automation is a critical component to maintain agility, and save testers from routine, time-consuming and error prone

manual testing activities [7]. However, there are so many testing tools with record/play back feature available in the

market in both open-source and commercial sectors for web applications. Test teams should think carefully when

choosing one tool over the other. Which tool to select can be challenging and vital to project success, especially

when testing against dynamic web applications.

Another compelling issue for test engineers is to know what to automate exactly? And, how do test engineers

know if their automation tests are enough, precise and effective? For example, automating functional tests against

the graphical user interface (GUI) can be tricky due to the fact that GUI changes more frequently by development

team. Moreover, automation test scripts can get larger every sprint, thus, making them harder to maintain, enhance

and modify by test engineers. Test engineers need to have a clear plan and guidelines of what should, and what

should not be automated. In this paper, guidelines and best practices are formalized, enabling test teams to apply

successful test automation strategies.

In this study, automation tools for web applications, taken from both commercial and open source fields, are

compared together. These tools are chosen based on their popularity and reviews from software developers and

testers. Using an experiment research method, these tools were run against real-world, dynamic web application

sample, built for the purpose of experiment itself and written in ASP.NET 3.5 using Visual Studio 2010. All web

pages are built in run time in order to test the effectiveness of automation tools.

Results show that open source and free automation tools seemed to produce more reliable and flexible test cases

than commercial automation tools.

This paper is organized as follows: section 2 discusses dynamic web applications; section 3 provides an

introduction to HTML, since that HTML is what the automation tools try to access and manipulate during test play

back; section 4 discusses test automation in relation to categories and importance; GUI testing tools for web

applications are outlined in section 5; section 6 presents experiment design and methodology; whilst results are

compared in section 7; guidelines for implementing GUI automated tests for web applications are put forward in

section 8 and conclusions are drawn in section 9.

2. DYNAMIC WEB APPLICATIONS

Dynamic web pages form the basis of modern web applications, which is the main theme of this paper. Contents

and layout of a dynamic web page are changed and updated every time that page is requested by user. Some dynamic

web pages even change their layout and content during the process of viewing that page. Such pages employ a

popular technology such as Ajax (Asynchronous Java and XML) that do not require the whole page to be reloaded.

Web applications follow the n-tiered structure by nature, and every tier has a designated role. Even though there

are other variations, the most common form of n-tier structure is the three tiers [8].The first tier, known as the client

(presentation), is represented by a web browser such as Mozilla or Internet Explorer. This thin-client web browser is

mainly responsible for viewing and rendering HTML documents on screen and generating HTTP (Hyper Text

Transfer Protocol) requests to a web server. The second tier is the middle tier which is the web application itself,

running a dynamic web content technology such as ASP.NET, PHP, JSP, ASP, or Perl to name a few, is hosted by

the web server. The dynamic web content technology is responsible for generating HTML content that is sent back

by the web server to the client (as shown in Fig. 1. The third tier is the storage tier which is responsible for persisting

the data, normally using a relational database.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 40

Figure1: Logical View of Web Applications

Dynamic web applications pose certain challenges for test engineers when automating functional tests using test

tools through the GUI [21]. First: due to the fact that dynamic web pages change their content and/or layout from

one page execution to another, automation testing tool‟s record/playback feature may fail to play back the test again

successfully. This happens because during the test recording process, the test tool recognizes page elements (such as

text fields, labels, lists, tables, cells in tables, menu items, links, etc.) according to their position in the page

hierarchy and attribute values. However, when playing back the recorded test the requested page changes element

attributes and even layout, causing some automation tools to fail finding those elements, thus, causing the test to fail

[21].

The second challenge for web application automated testing is the ability for test tools to wait for web pages to

load completely before starting to access page elements. As stated before, Ajax and scripts in the page can load

additional page content or modify existing content after a page is returned back from the server [9]. When a test

automation tool fails to wait for web page to load completely, it will start to search for web page elements before

they are being loaded, causing the test to fail during playback.

These two challenges pose important reliability criteria for record/play features in automation tools and will be

carefully tested and considered when comparing testing tools.

3. HTML TAGS

Web pages are presented as HTML mark-up. The HTML document consists of mark-up tags, which in turn

describe how web pages will be presented in the web browser. HTML tags are keywords surrounded by angle

brackets, such as <html>. Most tags come in pairs known as start and closing tags, such as <p> and </p>

respectively [10]. Web page elements are everything between starting and corresponding closing tags, as shown in

Figure 2.

Figure 2: Paragraph Tag.

Most HTML elements have attributes. Those attributes provide additional information about the element and are

always specified in the opening tags. Attributes come in name/value pairs, such as id=”txtName”. An example is

shown in Figure 3 with “href” as the attribute name.

Figure 3: Link Tag.

Attribute id specifies a unique identifier for an element in a web page; but no two elements can have the same id

value in same web page. Values for id attributes are normally provided by web programmers, and do not changed

from one page run to another. However, not all web page elements have this attribute. This is due to the fact that web

developers normally do not provide values for all web elements‟ id attributes; and because some web pages get

generated dynamically.

Test automation tools for web applications work against HTML tags. Thus, it is important that these test tools

provide additional mechanism to locate web page elements, other than using the id attribute. Such additional

mechanisms can be using other combinations of attributes values to locate an element, or searching for an element

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 41

related to other elements in the page hierarchy (XPath).

4. TEST AUTOMATION

Having software to test software is called test automation. GUI test automation is an important part of software

testing and provides software testers with early warning signs when parts of the system have changed or been broken.

Constant testing is required to enable agile teams to release production-ready software regularly at the end of every

sprint. In order to maintain agility, automation should be a critical component with high priority for the entire team. Agile

testers should also have a team oriented approach and use a variety of testing tools within their testing efforts and

activities [11].

4.1 Test Automation Types

There are three main different types of automated tests according to [7]. The first category is the foundation and comprise

of robust unit and component tests. They are generally written in the same programming language as the system with the

help of unit test framework, such as JUnit which is used for Java unit testing and NUnit for .NET applications. Unit tests

have the biggest return on investment (ROI) and provide the quickest feedback.

The second category of automation tests are the tests that operate on the API (Application Programming Interface) level

or “behind the GUI”. These tests target the functionality of system without going through the GUI. They usually include

“story” and “acceptance” tests and cover larger sets of functionalities than unit tests. Since they bypass GUIs, they are

less expensive to write and maintain compared with GUI tests. Tools can be used by test engineers in this category, such

as Fit and FitNesse [7].

The third category is known as GUI automation tests, which are the focus of this paper. These tests operate on

the presentation layer of the application through GUIs. They are usually written after code is completed, and run

slower than unit or API tests. Automated GUI tests are important and should always go into regression tests. In

fact, many software bugs only manifest themselves at the GUI. In many cases, a back -end change could affect

GUI functionality [7]. Furthermore, GUI automation tests provide much more test integration compared to unit

tests, since they test a whole series of events [12].

4.2 Importance of Automation Testing

As argued by [7], there are many reasons why teams should employ automated testing. Firstly manual testing takes

too long and gets longer and longer as software applications get bigger and bigger every sprint. In fact, depending on the

complexity of the application under test, the time to test everything manually can get bigger exponentially. Test

engineers need to run a full suite of passing test regressions daily. And this can never happen using manual testing. On

the other hand, time is saved when employing automated testing because automated tests run faster than human tests,

giving the ability to be run at night. Secondly, manual testing is error prone. As testing gets repetitive, it will get to be

boring for test engineers and too easy to make mistakes, overlooking even simple bugs.

Another reason of using automated testing is that automation frees test engineers to do their best work. Test

engineers will have more time to do important exploratory functional testing, exploring weak parts of the system and

producing smart test cases. Moreover, automated testing provides a safety net. Knowing that the code has enough

coverage by automated tests provides a feeling of confidence for development team [7]. Also, automated tests give early

feedback to developers as running automated regression tests every time code is changed, gives early feedback to

developers if that change breaks any functionality. This change will be fresh to programmers, and will not take much

time to fix it again. Finally, automated tests are great documents of how the system actually works. This is due to the fact

that automated tests will always be accurate since they are getting updated continuously by test engineers.

5. GUI TESTING TOOLS FOR WEB APPLICATIONS

Automation tools that automate GUI functional tests against web applications have been in the market for years,

mostly equipped with an important feature known as record/playback. Automation tools work against web pages in

HTML format. Using these tools, test engineers can record a functional test, and play it back as needed, possibly at

regression tests. In this paper, the authors conduct comparisons between automation tools based on several important

factors:

Firstly, it is important for an automation tool to have reliable record/playback feature especially against dynamic

web pages. Once test engineers record a test, the tool should execute the test during test-playback without errors, in

most cases. Secondly, test tools should be able to export resulting tests as programmable scripts so that test engineers

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 42

can easily understand, maintain, enhance and re-factor into modules to take advantage of future reusability. Using

the resulting test script, test engineers can enhance it to address complex test cases and to employ data test-driven

test scripts.

Thirdly, the diversity of techniques provided by test tool frameworks in order to find elements on web pages is an

extremely important factor as well. This is due, as stated before; to the fact that dynamic web pages change their

layout and element attributes form one page execution to another. The most important techniques for searching for

web page elements are: searching by id, searching by any group of element attributes, searching in relevance to

another element (searching by XPath), and searching by DOM (Document Object Model). For instance, sometimes

test engineers have to write a test script that searches for an element that does not have a unique name or id. To solve

this problem, using XPath, test engineer can locate that element relative to another element that does have an id or

name attribute.

Another factor to consider is the ability for a test tool to support cross-browser compatibility. Many web

applications have a priority feature to support different browsers, such as Internet Explorer, Mozilla Firefox and

Google Chrome. And test engineers will have to automate functional tests in those browsers. Finally, test tools

should be effective when it comes to waiting for web pages to load completely before they start accessing and

manipulating web page elements.

Finally, test teams should carefully consider the various technical support services available by tool vendor and

how much efficient, reliable and responsive those services are. Chances are very high that test teams run into an

issue or problem while using the automation tool. An since the main reason for using automation testing is the speed

and saving of time, test engineers cannot waste much time in developing a solution that someone else already knows.

Technical documentation is provided by all vendors and is considered important and first place to look at when

searching for help. However, documentation is not usually enough and other technical support services should be

provided by tool vendor. Such additional services are: forums, technical articles and bug tracker systems.

Additionally, we found it extremely important that discussion forums not only include regular members (client), but

also include technical personnel dedicated to answer enquiries posted by clients.

A variety of automation tools for web applications are available for test teams from open source and commercial

sectors. This paper compares four different tools taken from both open source (Selenium and Sahi [13]) and from

commercial fields (TestComplete and VS 2010 Web Tests).

TestComplete, a product of SmartBear, is one of the premium commercial automation testing tools, and most

notable [14][15]. TestComplete can create, manage and run automated tests for any windows, web or rich client

software. By using TestComplete, test engineers can perform several types of automated tests, such as functional

Graphical User Interface (GUI) tests, regression tests, load and stress tests, unit tests and many more. Another reason

for choosing TestComplete is that it provides testers with the ability to write test scripts from scratch using scripting

language, such as Java Script. This ability enables testers to write complex and dynamic test scripts [21].

Visual Studio Web Tests, a product of Microsoft available since Visual Studio 2005, works at the protocol layer

by issuing HTTP requests. Web Test has been chosen for this paper because it is famous among .NET developers

since that it is shipped freely with the Visual Studio. When a tester records a test scenario, the web test records a

series of HTTP requests and later, when performing a play-back, the web test executes those HTTP requests in the

same order they were recorded. According to [16], Web Tests can be used to test the functionality of web

applications as well as testing the application stress, which is also known as load testing. Web tests automatically

handle other aspects of HTTP, such as hidden field correlation, redirects, dependent requests and HTTPS/SSL.

Selenium is an open source and free automation tool that can be used to record GUI tests against web

applications. It is a very easy tool to learn and use, available as Firefox plug-in. During test recording, Selenium

provides a context menu that allows testers to select web page elements, and then choose from a list of predefined

commands to be applied on selected elements. This saves lots of time for the test engineer, and provides an easy way

to learn generated scripts [17]. Apparently, Selenium has a reliable record/playback tool when run against dynamic

web applications. Selenium also provides a wide range of techniques available for test engineers in order to locate

web page elements. During test recording, Selenium automatically inserts commands into test scripts based on

actions. For example, when a tester clicks on a link in a web page, Selenium inserts the ClickAndWait command so

that the tool can wait until the page is loaded completely.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 43

Sahi, another open source and free automation tool specially designed to support cross-browser testing for web

applications with lots of AJAX and dynamic content [18]. Sahi injects JavaScript into web pages with the help of a

proxy in order to automate web pages. Sahi seems to have a more reliable record/playback tool compared to

TestComplete. Also, during the comparison, Sahi appeared to have much more effectiveness when processing web

page waits (waiting for the web page to load completely). Test scripts are exported in JavaScript to enable good

programming control [18]. Test scripts were very robust during comparisons; there was no need to script statements

for page waits. Sahi supports data-driven tests, and can be easily connected to Excel, database or CSV files.

Many open source web testing tools exist. However, the selection from these tools was based on their

ability to provide record/playback feature and the ability to generate test scripts that can be modified and

enhanced later on by testers. Furthermore, Selenium and Sahi are highly recommended form developers and

testers. Recommendations can be found in several well-known technical forums such as [20].

6. EXPERIMENT DESIGN AND METHODOLOGY

Since that dynamic web applications present significant challenge for test automation tools [21], the sample web

application pages under test (HTML) have to be created at runtime by application itself. There are several programming

languages and technologies that can be used to create dynamic web applications such as PHP, JSP (Java Server Pages),

ASP (Active Server Pages), and ASP.NET to name a few. Any of these languages can be used for creating dynamic web

site for the purpose of this study paper.

This is due to the fact that no matter what is the language or technology used on server, all what is returned to

the client (Web Browser) is HTML. And automation testing tools run against HTML during test record and test

play back. In this paper, ASP.NET with C# was chosen in this study since it provides object -oriented

programming paradigm and because of related professional experience of authors.

6.1 Samples Web Application

The sample web application under test was built using ASP.NET 3.5 in C# and SQL SERVER 2008 Express Database.

Sample web application simulates a medical application for a clinic. Using this application, a doctor can track and

maintain patients‟ medical and personal data. Doctor can add medical data such as incident, immunization, blood and

alcohol tests as well as appointments.

When doctor first navigates to application URL, login page is displayed. Upon successful login, doctor is presented

with dashboard page, which contains two parts. First part is a dynamically generated two-level main menu acting as main

navigation panel. Second part is a group of data grids showing tabular information (DataGridView Server Control) about

last visits (encounters), appointments and so on. With every grid having a search header to enable doctors to search for

specific records. Doctor can also search for and maintain person information using “Person“ link located on main

navigation panel left screen. Please refer to Appendix A.

Having a detailed page for every entity in system (person, incident, appointment, etc), when a doctor clicks on certain

row in a grid, detail entity information is displayed in another browser instance window. There, a doctor and update,

insert new or delete entity data. It is important to open detail pages in separate browser window since some testing tools

have shortages accessing web pages in several browser windows [21].

All grid view controls are built dynamically during run time when page is requested. This is done through specific

class (GridGenerator) that, based on grid id, extracts related grid information such as data source, column names and

properties from database, then builds grid in runtime. The main navigation panel is built dynamically as well, all

navigation links are loaded from database. Author deliberately did not assign object names for links in main navigation

panel. This is done to test the ability for test tool to locate web page elements that do not have an id attribute in their

HTML tag.

The rationale behind having the grid view built dynamically is that many professional web developers in real-world

applications require that all grid view controls across all pages to be consistent with same look and feel. This is usually

achieved by having a general centralized routine that generates grid views at run time, taking the attributes (number of

columns, column names, column types, styles, etc) from database. The result will be rendered as HTML table. However,

the resulting cells and rows tags of that HTML table will normally have no id or “name” attributes. This will be

challenging to automated test tools to allocate and access these tags. Sample code for creating dynamic grid view control

is shown in code listing Figure 4.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 44

Figure 4: Sample Code for Building a GridView

6.2 Test Scenario Steps

The test case scenario that will be applied to all test tools‟ recorder feature is as the following:

The tester runs sample web application and login page is displayed. Tester enters user name and password, and then

clicks on login button. Upon successful login, dashboard is presented with all grid views showing sample data. Tester

then clicks on “Person” link in main navigation panel left screen. System loads “Person Search” page and tester enters

any search data and then clicks on search button. Page is reloaded and then grid shows rows matching search criteria.

Tester clicks on first row and detail page for person data will be displayed. User will change some of the data in detail

page then clicks save and close page. Finally, the search page is reloaded to reflect new data changes.

6.3 Methodology

Applying an experiment research method, the authors implemented the comparison experiment dividing it into three

main phases. First phase was concerned with comparing the effectiveness of record/playback feature for testing tools.

During this phase, test scenario was recorded and played back for several times for each tool. If any errors were

presented, the test log was carefully investigated to trace and identify the problem.

Second phase was based on modifying generated test scripts for each tool to explore various mechanisms to locate

web page elements. During second phase, mechanisms to locate web page elements were applied to locate elements that

do not have id attributes. Such elements were the rows and cells for DataGridViews. This was done by modifying test

scripts to search for web page elements based on search by id, search by group of attributes (other than id), search by

XPath and search by DOM. Test was run several times for each mechanism available.

Finally, the same test scenario was recorded and played back using Internet Explorer 9, Mozilla FireFox and Google

Chrome. Results and observations were recorded based on several factor variables. First, the ability for test tool to

successfully playback (execute) test script produced by record/playback feature successfully and without errors.

Secondly, the ability for test tool to successfully allocate and access page elements that do not have id or “name”

attributes. Finally, all tests were repeated using IE, Mozilla and Chrome web browsers.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 45

7. COMPARISON OF RESULTS

7.1 Record/Playback Tool Reliability

The record/playback tool on Selenium and Sahi appears to be more reliable, effective and time saving compared to

TestComplete and VS Web Testing. In fact, recording and running tests using TestComplete‟s record/playback tool

appears to be weak when it comes to dynamic web pages.

During the comparison, most tests recorded by TestComplete for dynamic web pages, failed to run again later on,

because the TestComplete engine cannot recognize some of the onscreen elements, such as links, buttons, text fields, etc.

As shown at Appendix A, TestComplete could not find “Person” link located at navigation panel.

SmartBear acknowledges this problem, as argued in [19]. This problem has actually been present since TestComplete

7.5 [21] and is still not solved in the current version of TestComplete 8.5, which is the version used in this paper.

This is due to the fact that, at the time of recording the test, TestComplete recognizes the web page elements through

the values of a set of their attributes. Those attribute values are saved by TestComplete and used later on to find page

elements when replaying the test. If one attribute for web page element changes its value, TestComplete will not

recognize it and the test will fail. When the test is re-played and the tested web page is recreated, TestComplete engine

records different values for some of the attributes for web page elements [19]. This problem can be easily proven using

the object selector tool available by TestComplete itself. After the test fails because TestComplete could not find certain

web page elements, test engineers can use the object selector tool and notice that some of the attributes for that web page

element have changed.

TestComplete also was not robust when processing page waits. Test engineers have to write special scripts in order to

make TestComplete engine waits for a web page to load completely before starting to access web page elements. On the

other hand, Selenium and Sahi seems to be more reliable when waiting for pages to completely load before starting to

access web page elements.

During the comparison, recording a web test in Visual Studio 2010 is relatively easy, and begins by starting Internet

Explorer with an additional panel that represents the recorder tool itself. As the tester proceeds with the test scenario, the

web test records all HTTP requests [12]. Web test is most suitable when performing simple functional tests and when

testing availability and navigability of a web application. For instance, a tester can easily create a web test that tests the

availability and links of all web pages for a web application [16].

However, web tests in Visual Studio do not provide the dynamic and rich programming features provided by other

tools give examples of dynamic and rich features. It is true that a tester can create data-driven web tests and convert the

recorded HTTP requests in C# language so as to add looping and branches: but the web test is only based on recording

HTTP requests. Additionally, the resulting tests in C# are hard to understand and maintain compared to other tools in this

paper.

7.2 Cross Browser Compatibility

Cross browser compatibility was based on comparing tools based on compatibility for Internet Explorer (IE), Firefox

and Google Chrome. TestComplete seemed to have less compatibility with web browsers, especially Internet Explorer

(IE) when compared with Selenium and Sahi. This is due to the mechanism that TestComplete engine uses to access web

pages, which is based on accessing IE run-time process, then access IE window, then accessing the web page itself. This

mechanism produces a problem for the TestComplete playback tool because IE version 8 and above opens dictated

process for each browser tab. Thus, TestComplete playback tool fails to find web pages because their processes order and

name change from one test run to another and when tabs are opened and closed during testing. We had to manually

configure IE to open one process for all tabs in order to make TestComplete playback more robust.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 46

This is not a problem for Selenium and Sahi tools because these tools do not depend on run-time processes; they

focus on web pages at hand and re-parse page HTML every time that page gets refreshed or updated. On the other hand,

Web Tests in VS 2010 only supports Internet Explorer (IE) web browser. In fact, the recorder tool is presented as a plug-

in for IE window.

7.3 Techniques for Finding Web Page Elements

A summary of various techniques available in each tool for test engineers to find web elements in a web page is

shown in Table 1.

Table 1: Summary of Various Mechanisms for Locating Web Page Elements in Compared Tools

7.4 Technical Support
A summary of technical support services provided by each tool vendor is shown in Table 2.

Table 2: Summay of Technical Support Services

8. GUIDELINES FOR IMPLEMENTING GUI AUTOMATED TESTS FOR WEB

APPLICATIONS

Record/Playback automation tools for web applications are plenty and appealing. Test engineers can create lots of

scripts in a short time. With the help of automation tools, test teams can keep pace with the development in order to

produce working software every sprint. However, there are several important guidelines that test teams and management

should be aware of when adopting automation strategy.

Firstly, management needs to be aware that automation usually requires an initial investment in hardware and,

probably, software tools. One of the advantages of automated testing is, as shown before, timely feedback through

regression tests. In order to run daily regression tests, separate machines need to be configured for this purpose.

Furthermore, test teams need the time to learn how to use selected automation tools and how to write and maintain test

scripts.

Secondly, as discussed briefly in this paper, tool selection is vital to team success. Sophisticated and expensive

commercial tools seem to put extra burden on testing rather than helping it. On the other hand, simple and free tools can

be much more powerful and helpful. It is very important that test teams explore the capabilities of automation tools

before selecting one.

Additionally, test scripts should be well designed to be simple and maintainable. GUI automation testing is tricky

because GUI‟s tend to change during software development. It is very important for test engineers to design test scripts

based on modules and common procedures [7]. For example, a common procedure that accepts a web page reference and

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 47

an array of attributes can save lots of effort and time when locating web page elements using any combination of

attributes.

Another example would be, supposing that in a web application that has a common tool bar that contains certain

functionality such as save, cancel, new, etc., since this tool bar will be available in several pages; it is much more helpful

to design a common procedure to invoke certain functionality on that tool bar. Such a procedure can have a web page and

functionality to be invoked as input parameters.

Common test script procedures should also be designed to be independent on certain test cases. This gives the

flexibility for those procedures to be invoked by other test cases to promote reusability. Having test scripts written based

on common procedures and modules will result in flexible and maintainable test scripts. Thus, whenever certain GUI

changes are made by the development team, test engineers will be able to easily maintain tests to accommodate that new

change. Additionally, when new a GUI is produced by the development team, test engineers can build test scripts in

relatively short periods of time because these test scripts are based on common procedures.

Furthermore, test engineers should never hard-code page names and page URL‟s. Instead, this kind of data should be

kept in resource files to enable test engineers to change their values without affecting the test script itself. And for large

scale software projects, the test scripts will get extremely big and harder to understand. Thus, special and simple coding

standard rules should be applied by test engineers to unify all test scripts. The most important things about these rules are

having comments for all procedures and modules/classes, as well as having meaningful names for all variables and

parameters.

For database-centric web applications, design test scripts test page save and update functionalities in both full and

required-only data. The same test script should then retrieve data entered using application search features to make sure

that the application saved the right data. For example, suppose in a human resource application, when testing the

employee details page, test scripts should enter full data then save the new employee. After that, test scripts will search

for that new employee, view all data, and compare data with the actual test data. These kinds of test scripts can cover a

large spectrum of underlying application features and rules. Additionally, these kinds of scripts can be time consuming

and error prone if they are done manually.

Automation tests are only good if they are likely to find bugs. Thus, test engineers should avoid testing full

functionality of applications through GUI automated testing [12]. Test engineers should focus on testing the overall

functionality of application, such as checking the buttons really work and do what they are supposed to do. Other types of

test that should be automated are the ones that consume lots of time and effort when done through manual tests. Test

engineers should avoid testing the usability of the application. Usability testing needs humans to actually use the software

[7].

Finally test engineers have to make sure that developers give id for web pages‟ elements; this will make locating

those elements much easier in test scripts. Moreover, tests for testing the links in all web application are a very important

part of automation. There is no need for someone to manually check all links in web applications.

9. CONCLUSIONS

This paper compared several automation testing tools, namely: Sahi, Selenium, TestComplete and Visual Studio

2010, against dynamic web applications. Several comparison criteria were discussed in depth, such as reliability of

recorder/playback tool, cross browser compatibility, handling of page waits, and the support of various mechanisms for

locating web page elements.

The strengths, weaknesses and limitations of these tools where investigated in some depth. It has been shown that

simple and free automation tools can be much more powerful than commercially sophisticated and expensive tools. This

paper also discussed the importance of automated testing and why it is important. Furthermore, this paper presented vital

guidelines for test teams when adopting automated testing against web applications. For future studies, the comparison of

these tools can be expanded to include the support for third-party web GUI widgets, such as Telerik and Infragistics as

well as the support of HTML 5.

7. REFERENCES

[1] Afroz, S., Rani E. &Priyadarshini, N. (2011) “Web Application – A Study on Comparing Software Testing Tools”,

International Journal of Computer Science and Telecommunications, 2(3).

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 01– Issue 02, August 2013

Asian Online Journals (www.ajouronline.com) 48

[2] Business Internet Group of San Francisco (2003) The BIG-SF Report on Government Web ApplicationIntegrity.

Available at: http://www.tealeaf.com/downloads/news/analyst_report/BIG-SF_Report_Gov2003-05.(Accessed: 9 May

2011).

[3] Business Internet Group of San Francisco (2003) The Black Friday Report on Web Application Integrity. Available

at: http://www.tealeaf.com/downloads/news/analyst_report/BIGSF_BlackFridayReport.pdf. (Accessed: 9 May 2011).

[4] Brooks, P., Robinson, B., and Memon, A. M.(2009) “An initial characterization of industrial graphical user interface

systems,” in ICST 2009: Proceedings of the 2nd IEEE International Conference on Software Testing, Verification and

Validation. Washington, DC, USA: IEEE Computer Society, 2009.

[5] Xun Yuan, Myra, B. Cohen, Atif M Memon, (2011) “GUI Interaction Testing: Incorporating Event Context”,

IEEE Transaction on Software Engineering, 37(4): 559-574.

[6] Sommerville, I. (2004) Software Engineering, England: Addison Wesley.

[7] Crispin, L. & Gregory, J. (2009) Agile Testing: A Practical Guide for Testers and Agile Teams, Boston: Addison

Wesley.

[8] Wikipedia (2012) Web Applications.Available at:http://en.wikipedia.org/wiki/Web_application (Accessed: 5 May

2012).

[9] SmartBear Software (2011) Testing Dynamic Web Pages.Available at:

http://smartbear.com/support/viewarticle/12725/

(Accessed 16 April 2011).

[10] w3schools.com (2012) Learn HTML [Online]. Available at: http://www.w3schools.com/html/html_intro.asp

(Accessed: 14 March 2012).

[11] West, J. (2012) “Automated Testing in Agile Environments”, [Online]. Available

at:http://support.smartbear.com/articles/testcomplete/automated-testing-agile-environment/ (Accessed: 10 May 2012).

[12] Levinson, J. (2011) “Software Testing With Visual Studio 2010”, Boston: Pearson, Inc.

[13] Tyto Software Ltd (2012) Sahi[online]. Available at: http://sahi.co.in/w/sahi (Accessed 6 May 2012).

[14] Riley, M. (2010) DevProConnections. Available at: http://www.devproconnections.com/article/software-

testing/Review-SmartBear-Software-s-TestComplete-8-Enterprise (Accessed 15 April 2011).

[15] SmartBear Software (2011) Top Reasons to Try TestComplete, [Online]. Available

at:http://www.automatedqa.com/products/testcomplete/top-reasons-to-try/ (Accessed: 12 May 2011).

[16] Microsoft (2012) Understanding Web Tests [Online]. Available at: http://msdn.microsoft.com/en-

us/library/ms182537%28v=vs.90%29.aspx (Accessed 2 March 2012).

[17] Selenium IDE (2012) Introduction to Selenium IDE [Online]. Available at:

http://seleniumhq.org/docs/02_selenium_ide.html#script-syntax (Accessed 3 March 2012).

[18] Java-Source.net (2012) Open Source Web Testing Tools in Java[Online]. Available at: http://java-source.net/open-

source/web-testing-tools (Accessed 17 March 2012).

[19] SmartBear Software (2011) Testing Dynamic Web Pages. Available at:

http://smartbear.com/support/viewarticle/12725/

(Accessed 16 April 2011).

[20] Stack Overflow (2012) Stack Overflow is a programming Q & A site that’s free. Available at:

http://stackoverflow.com (Accessed 16 January 2012).

[21] Zain, S., Elyan, D. (2012) „Automated User Interface Testing for Web Applications, and TestComplete‟, CUBE

2012: International IT Conference and Exhibition. Pune, India 3-5 September. ACM, pp. 350-354.

http://www.tealeaf.com/downloads/news/analyst_report/BIG-SF_Report_Gov2003-05
http://www.tealeaf.com/downloads/news/analyst_report/BIGSF_BlackFridayReport.pdf
http://en.wikipedia.org/wiki/Web_application
http://smartbear.com/support/viewarticle/12725/
http://www.w3schools.com/html/html_intro.asp
http://support.smartbear.com/articles/testcomplete/automated-testing-agile-environment/
http://sahi.co.in/w/sahi
http://www.devproconnections.com/article/software-testing/Review-SmartBear-Software-s-TestComplete-8-Enterprise
http://www.devproconnections.com/article/software-testing/Review-SmartBear-Software-s-TestComplete-8-Enterprise
http://www.automatedqa.com/products/testcomplete/top-reasons-to-try/
http://msdn.microsoft.com/en-us/library/ms182537%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms182537%28v=vs.90%29.aspx
http://seleniumhq.org/docs/02_selenium_ide.html#script-syntax
http://java-source.net/open-source/web-testing-tools
http://java-source.net/open-source/web-testing-tools
http://smartbear.com/support/viewarticle/12725/
http://stackoverflow.com/

