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_________________________________________________________________________________ 

ABSTRACT— This article details the exploration and application of Genetic Algorithm (GA) and Particle Swam Optimization 

(PSO) for the wrapper-based feature selection. Particularly a comparative study is carried out, examining the performances of both 

GA and PSO with respect to classification accuracy of some classifiers. 112 features were extracted features from set of images 

found in the Flavia dataset (a publicly available dataset). The extracted features are Zernike Moments (ZM), Fourier Descriptors 

(FD), Legendre Moments (LM), Hu's Moments (Hu7M), Texture Properties (TP), Geometrical Properties (GP), and Colour 

features (CF). The main contribution of this article includes the comparison of two major optimization techniques, i.e., GA and 

PSO, and the development of a GA-based feature selector using a novel fitness function which enabled the GA to obtain a 

combinatorial set of feature giving rise to optimal accuracy. The effectiveness of these manifold projection techniques were tested 

on Probabilistic Neural Networks (PNN), k Nearest Neighbour (kNN) and Multilayer Perceptron (MLP).  The experimental 

analysis demonstrates the classification accuracy with GA-based approach outperforming that with PSO-based method. 

 

Keywords— Genetic Algorithm, Particle Swam Optimization, Feature selection, Precision Agriculture. 
_________________________________________________________________________________ 

1. INTRODUCTION 

High dimensional feature set could pose a great difficulty to pattern or image recognition systems. This is known as "the 

curse of dimensionality ". In other words, too many features often require intensive computation and also reduce the 

classification accuracy of the recognition system since some of the features may be redundant and non-informative [6, 7]. 

For the wrapper-based approaches, different combinatorial set of features should be obtained in order to keep the best 

combination to achieve optimal accuracy. In this work, both GA-based and PSO-based feature selection (a subspace or 

manifold projection techniques) are used to optimize the initial setting of the concerned classifiers, so as to obtain the 

'optimal' subset of features.  The performance of the concerned learning machines is further evaluated with the features 

selected from both GA and PSO.  

 

A Feature Subset Selection (FSS) is an operator Fs or a map from an m-dimensional feature space (input space) to n-

dimensional feature space (output) given in mapping, 
 

                                          
nrmr RRFs  :      ………………………………….(1) 

where  nm   and 
Znm, ,  

mrR 
 is any database or matrix containing the original feature set having  r  instances 

or observation,  
nrR 
  is the reduced feature set containing r observations in the subset selection. This is further 

illustrated in Figure 1. 

 

 
 
  Figure 1: Illustrative diagram on Feature selection 

http://en.wikipedia.org/wiki/Curse_of_dimensionality
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The map FS in Equation (1) can be any linear or nonlinear. There are three FS techniques, categorized as follow: 

 

(a) Filtering-based approach  

(b) Wrapper-based approach 

(c) Embedded hybrid approach 

 

In filtering-based approach,  some evaluation function is used independently of the classifier in selecting feature subsets. 

Examples of functions used in these methods are: metric measure, information gain, dependency and consistency. The 

simplest of these methods is best individual features, where a function is used to rank individual features and the 

highest ranked p features are selected. The low scoring features are removed. The major advantage of this method is that 

it is computationally simple and fast and  it is  also carried out independently of the classification algorithm. 

 
In Wrapper-based approach, feature subset selection is done through evaluation of each candidate subset with estimation 

obtained from the classifier or learning algorithm [9]. Wrapper Algorithms interact with the learning algorithm and 

model feature dependencies. However, the effectiveness of FS is dependent on the classifiers being selected. Wrapper-

based FS is the choice for this study as it guarantees better accuracies.  

 

 

In the embedded hybrid approaches, the search function is built into the learning or classification algorithms [10, 11]. 

That means classifier is seen as a composite functional. In other words, the feature space is fed into the classifier and the 

feature selector component part of the classifier is invoked first before the classification is done. 

 

2.  RELATED WOK 
The following table taken from [15], summarizes types, examples, advantages and disadvantages of feature selection 

methods. 

 

Type Advantage Disadvantage Examples 

(1a) Univariate 

Filter 

It’s fast, scalable 

and Independent 

of the learning 

algorithm 

It ignores feaure depencies 

and interaction with the 

learning algorithm 

Chi-square, 

Euclidean distance, 

t-test, Information 

gain, Gain ratio 

etc 

(1b)Multivariate 

Filter 

It models feature 

dependencies, it’s 

independent of 

the learning algorithm, 

it has better 

computational 

complexity than 

wrapper method 

It’s slower and less scalable 

than univariate techniques. It 

ignores interaction with the 

learning algorithms 

Correlation-based 

feature selection( 

CBFS), Markov 

Blanket 

filter (MBF), Fast 

Correlation- 

Based Feature 

Selection (FCBF) 

(2a) 

DeterministicWrapper 

It’s simple. It interact with the 

learning algorithm. It models 

feature dependencies. It’s less 

computationally intensive than 

stochastic methods. 

It has risk of over fitting. It’s 

more to getting stuck in a local 

optimum than the stochastic 

algorithms 

Sequential Forward 

Search(SFS), 

Sequential 

Backward 

Elimination (SBE), 

plus q minus 

r, Beam search 

(2b) Stochastic 

Wrapper 

It’s less prone to local optima. It 

interacts with the learning 

algorithm. It models feature 

dependencies. 

It’s computationally intensive. 

It’s dependent on the learning 

algorithm. It has higher risk of 

overfitting than the deterministic 

type 

Simulated 

Annealing (SA), 

Randomized 

Hill Climbing, 

Genetic 

Algorithms (GA), 

Estimation of 

distribution 

algorithms 

(3) Embedded It has better computational 

complexity and better interaction 

with the classifier than Wrapper 

It’s a classifier-dependent 

algorithm 

Decision tress, 

Weighted Naive 

Bayes, feature 
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methods. It models feature 

dependencies 

selection using 

SVM weight 

vectors, Sparse 

regression, LASSO, 

Random 

Multinomial Logit 

(RMNL), 

Regularized 

Random Forest 

Memetic Algorithm, 

Autoencoding 

networks with a 

bottleneck-layer and 

many 

other machine 

learning methods 

applying a pruning 

step.  

 

 

3 COMPLETE DATASET (FEATURE SPACE) 
The Flavia dataset (a publicly available dataset) is utilized for the comparative study in this work [16]. The Flavia 

dataset is composed of a set of highly constrained leaf images taken against a white background and without any stem. 

Each class of leaves (with red, green and blue channels) has 50 to 77 leaf samples having resolution of 1600 x 1200 

pixels (see Figure 2). The original features extracted from the raw plant leaf images comprise of ZMs, FDs, Legendre 

Moments, Hu 7 Moments, texture, geometrical properties and Colour Features. The variables Fi; i = 1, 2, 3, ... 112, in 

Table 2 and Table 3 represent the original features needed for this work. Thus the feature space of this work is a 
mrR 

 

matrix, where r, (number of observations)= 1907 and m, (number of attributes or futures required) = 112. 

                                            
Figure 2: Four selected samples from the Flavia dataset 

 

 

 

Table 2: 112 Features in the extracted from the Flavia dataset 

 

SN Descriptor Feature Index Descriptor Cardinality 
1 Zernike Moments (ZM) F01, F02, …, F20 20 

2 Lengendre Moments(LM) F21, F22, …, F40 20 

3 Hu 7 Moments (Hu7M) F41, F42, …, F47 7 

4 Texture Features (TF) F48, F49, …, F69 22 

5 Geometric Features (GF) F70, F71 , …, F79 10 

6 Fourier Descriptors (FD) F80, F81,…, F100 21 

7 Colour features (CF) F101, F102,…F112 12 
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Table 3: Variable representation for the features in Table 2. 

 

Observation (Features) 

F1      F2      F3  …………..F112 

Image1 X1,1   X1,2      X1,3, … …………..X1, 112 

Image2 X2,1   X2,2      X2,3, …………….. X2, 112 

Image3 X3,1   X3,2      X3,3, …………….. X3, 112 

… ………………………………… 

… ………………………………… 

… …………… 

Image1907 X1907,1   X1907,2      X1907,3, … X1907, 112 

 

4 GENETIC ALGORITHM (GA) 

 Genetic Algorithms (GA) can be defined as population-based and algorithmic search heuristic methods that mimic 

natural evolution process of man [2, 4, 5, 12, 14]. GA iteratively employ the use of one population of chromosomes 

(solution candidates) to get a new population using a method of natural selection combined with genetic functionals such 

as crossover and mutation (in the similitude of Charles Darwin evolution principle of reproduction, genetic 

recombination, and the survival of the fittest). In comparative terminology to human genetics, chromosomes are the bit 

strings, gene is the feature, allele is the feature value, locus is the bit position, genotype is the encoded string, and 

phenotype is the decoded genotype [13]. The fitness of each chromosome is evaluated using a function commonly 

referred to as objective function or fitness function. In other words, the fitness function (objective function) reports 

numerical values which are used in ranking the chromosomes in the population. The fitness function used for both GA 

and PSO is given as Equation 2. The detailed description of the GA can be found in the companion paper  [3]. 

SO NN
f




      ………………………………….(2) 

where  

    =  kNN-based classification error ; ON  =  Cardinality of the original feature set ; SN  = Cardinality of the 

selected features. 

 
Table 3: GA Configuration 

GA Parameter Value 

Population size  120 

Genomelength 112 

Population type bitstrings 

Fitness Function f  in Equation (2) 

Number of Generations 300 

Crossover  Arithmetic Crossover 

Crossover Probability  0.8 

Mutation  Uniform Mutation 

Mutation Probability  0.1 

Selection scheme  Tournament of size 2 

EliteCount  2 
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Figure 3:  GA Simulation diagram on the 112 feature space 

 

The features generated by GA are those indexed by the following positional vectors: 

 

FeatVect1 =  GA_based_Features  = [3, 6, 8, 21, 56, 71, 75, 78, 101, 102, 103, 110, 111,112] 
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Figure 4: GA-Based Feature Selection [3]. 
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5.     PARTICLE SWAM OPTIMIZATION (PSO) 
The Particle Swam Optimization (PSO) is a computational technique that optimizes a given problem through some 

iterative updates on some solution candidates. The PSO was first introduced by Russel C. Eberhart and James Kennedy 

in 1995. It is an adaptive and swarm intelligence meta-heuristic algorithm based on socio-psychological paradigm. 

Specifically, the development PSO was based on observation of a group of animal behaviours such as bird flocks or fish 

schools. Just like the GA, PSO is also a population-based method, since it represents the state of the algorithm by a 

population, which is modified iteratively until a stopping criteria is met. Herein, a population of individuals (solution 

candidates or particles) adapts by randomly going back towards previously successful regions. It is to be noted that 

unlike the GA, PSO do not modify the population from generation to generation, but instead keep the same population, 

iteratively updating the positions of the members of the population. The PSO has two main functions (or operators): 

 

(i) velocity update     (see Equation 3) 

(ii) position update   (see Equation 4) 

 

During each generation each particle is accelerated towards the particles previous position, and the distance from the 

global best position. The new velocity is then used to calculate the next position of the particle in the search space. The 

process is iteratively repeated until some stopping criteria are met. Such may be minimum error. Let RRf n

PSO :  be 

the cost function associated with the PSO-based feature selection in this work. In other words, the features in the Table 3 

are to be reduced to a subfeature that minimizes classification error of our system. In this case the classification output 

will be the least error associated with the any of the sub-features generated by the binary PSO used herein. Thus the 

output, say psoERROR  R, is a single scalar (i.e 0.0009364 in Figure 6). The goal is to find a solution Rx *  such 

that )()( * xfxf PSOPSO   for all x (different combinatorial set of features from the original dataset) in the search space. 

 

1. Generate a population of agents (also called particles) over a uniform distribution space. 

2. Using a suitable objective function, evaluate each particle’s position. The fitness function used for the PSO herein is 

the same as that used for the GA (see Equation 2).  If the current position of a particle is better than the previous, update 

it. 

4. Determine the best particle according to the particle’s previous position. 

5. Update the velocities of the particles and 

6. Update the position of the particle via: 

   

 

)()( 2211

1 k

i

k

pBEST

k

i

k

i

k

i

k

i

k

i

k

i XPrcXPrcVV   .....................................(3) 

11   k

i

k

i

k

i VXX  …………………………………………………...(4) 

 
where 

▪  k = iteration number = 1000 

▪  Ni ,...,3,2,1 , N = Swarm initial population = 120 

▪  ParticleLength = 112 

▪  Population type : bitstrings 

▪  Fitness function : kNN-based classification error 

▪  Cognitive parameter c1 = 1 

▪  Social parameter   c2 = 1 

▪  Initial weight   = 0.25 

▪  
k

ir 1
and 

k

ir 2
 are random numbers uniformly distributed in the interval [0, 1]. 
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PSO Initialization
(Generate initial population)

For each particle in the
Initial population

Update the set {x, v} 
where x = position

v = velocity

Evaluate the f(x) where
f(x) = particle s fitness

Termination 
condition
Satisfied ?

Print  PB 
where PB = BestParticle

Next 
iteration

Yes

No

f(xi) < f(BP) ?

increase xi

decrease xi

Next particle

Yes

No

 
 

Figure 5: Overview of Particle Swarm Optimization (PSO). 

 

The following enumerated points are valid for explaining the underlying PSO used in this work: 

 

1. Original number of features: The candidate solution representing all features (shown in Table 3) in the original 

feature space is by a R112 x 1  matrix given as: 

 

OriginalString = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]. 

 

This is also called a particle but this is a special particle as it captures all the features represented in the 

original feature space. For this special particle, n = 112.  

 

2. BPSO Particle: A particle in the PSO is represented as n-bit string, where n is the number of available features 

associated with the solution candidate in the feature space. For example if the candidates population 

is a PopulationSize  x 112  matrix of binary strings which can be generated as follows: 

 
 
 
function PopBits = PopulationFunctionPSO 

PopulationSize = 120; 

CandidateLength = 112; 

RD1 = rand; % To generated binary chromosomes by comparison 

PopBits = rand (PopulationSize, CandidateLength) > RD1; 

End 

 

Any row from PopBits is a solution candidate. For example suppose a given row is given as : 
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PSOCandidate =  

[ 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 

1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 ] 

 

3. Binary digit {0,1}: In each binary string, ”1” represents selected features, while ”0” represents unselected 

features. 

 

4. How to obtain the features related to a particular candidate: Using the PSOCandidate above, we code as 

follows to obtain the associated features: 

 

PSOCandidate = find (PSOCandidate ==1); which gives the following feature index: 

 

PSOCandidateFeatureIndex = [1 2 6 8 13 14 15 17 18 20 29 30 34 37 43 44 45 49 53 54 55 57 59 61 64 65 67 

68 73 74 75 76 77 79 80 82 83 84 85 86 91 98 101 102 107 109 110] 

 

The new dataset associated with PSOCandidate will now be given as: 

 

NewDataset = OldDataset (: ,  [1 2 6 8 13 14 15 17 18 20 29 30 34 37 43 44 45 49 53 54 55 57 59 61 64 65 67 

68 73 74 75 76 77 79 80 82 83 84 85 86 91 98 101 102 107 109 110] ) 

 

The features generated by PSO are those indexed by the following positional vectors: 

 

FeatVect2 = PSO_based_Features  =  [1, 4, 8, 18, 19, 71, 74, 78, 100, 101, 102, 103, 110, 111] 

 

The FeatVect2 is just a variable holding the indexes of the features selected by the PSO. 

 

 
Figure 6: Simulation result for PSO: The features selected by the PSO were those indexed by the vector [1, 4, 8, 18, 19, 71, 74, 78, 

100, 101, 102, 103, 110, 111] in the dataset. There is a very high correlation and relationship between these features and those selected 

by the GA. 
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6. EXPERIMENTAL FEATURE ANALYSIS 
 

The computing platform for the entire experiments (both feature selections and image classification) was MATLAB 

(MATrix LABoratory).  A image processing tool built using MATLAB is shown in Figure 10.  The same number of 

features was generated by both GA and PSO. This mostly probably, may be due to the same fitness function used in both 

algorithms. (see Equation 2 ). Out of the 14 features selected by the GA and PSO, 8 were similar (see Figure 9). This 

implies the features common to both are very discriminating. These features were zernike moments, texture properties, 

and colour features. Based on the indices selected by both GA and PSO,  the corresponding features were then derived 

and tested on radial basis network (RBF), general regression neural network (GRNN) and multi-layer perceptron 

(MLP). A 10-fold cross validation (10 fold CV) was used to partition the feature space into the following was partitioned 

into training data and test data as {1717, 1716, 1716, 1716, 1716, 1716, 1716, 1716, 1717, 1717} and {190,  191,  191,  

191,  191,  191,  191,  191, 190, 190} respectively. The visual diagram for each of the fold is shown below. 

 

 

 
 
Figure 7: Splitting of Original DataSet into Training Set and Test Set 

 

 

 
 
Figure 8: Visual Representation of 10-Fold Cross Validation Experiments. The 10-Fold CV runs for 10 iteration, computing the 

classification accuracy for each fold , storing the accuracies and finally computing the average of these accuracies. 
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      Figure 9: Histogram of both GA-based and PSO-based features. A careful look at the these two histograms shows the similarity     

       between the features selected by both GA and PSO.  

 

 

Table 4: Experimental results 

 

S/N Classification  model Accuracy 

1 RBF + GA-based features 88.98% 

2 RBF + PSO-based features 82.75% 

3 GRNN + GA-based features 87.65% 

4 GRNN + PSO-based features 81.95% 

5 MLP + GA-based features 90.245% 

6 MLP + PSO-based features 82.456% 

7 RBF + Original features 82.56% 

8 GRNN + Original features 80.01% 

9 MLP + Original features 81.10% 

 

 
 

Figure 10: A computer-based  vision system for plant species classification 
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7. CONCLUSION 
This works demonstrates the impact of both GA and PSO on some selected classifiers. The original features space was 

reduced from a 1907 x 112 matrix of real numbers to 1907 x 14 matrix of real numbers. In other words, both GA and 

PSO selected only 12.50% of the original dataset.  Nine different classification models were tested as shown in Table 4. 

The results herein showed that both GA and PSO-based features outperformed the original features while GA-based 

feature in turn outperformed the PSO-based features. The features selected by both GA and PSO are somewhat similar as 

shown in Figure 9. This may be due to the same fitness function used for both. However the different computational 

nature of the two evolutionary algorithms (GA and PSO) may be the reason why the number of features selected both 

algorithms are not entirely the same.  Only 57% features were similarly by both algorithms. An indication here is that 

both PSO and GA are good candidates for feature selections and their application in precision agriculture (computer-

based vision systems for automatic identifications of plant species) proved useful as they were able to improve the 

classification accuracy of the underlying classifiers. 
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