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ABSTRACT— Synchronization of chaotic systems is a strategy wherein two chaotic oscillators adjust a given 

property of their motion to a periodic behavior due to their mutual coupling or forcing. This paper has studied and 

investigated the Chaos Synchronization problem of unified 3-D chaotic systems and two different 3-D chaotic systems 

using the Active Control Technique. Based on Lyapunov Stability Theory and Ruth-Hurwitz Criterion and using 

Active Control Algorithm, it has been shown that the proposed schemes have outstanding transient performances and 

that analytically as well as graphically, synchronization is globally exponentially stable. Numerical simulations and 

graphs are imparted to show the efficiency and effectiveness of the proposed schemes. 
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1. INTRODUCTION 

      The aim of chaos control is to stabilize a previously chosen unstable periodic orbit by means of small parameter 

perturbations applied to the system, so the chaotic dynamics is substituted by a periodic one, chosen at will among the 

several available [1]. This makes chaotic systems very interesting because they allow different uses, without performing 

structural changes, and employing a minimal external input [2]. 

      There is another important application of controlling chaos, known as the “synchronization of chaotic systems ".  

Synchronization of chaos as a process wherein two chaotic systems (either identical or nonidentical) regulate a given 

property of their motion to a similar behavior, due to pairing or forcing which ranges from complete agreement of 

trajectories to interlocking of phases [3].  If one consider two identical chaotic systems starting from different initial 

conditions, then the critical sensitivity to initial conditions (Butterfly Effect) implies that their differences sprout 

exponentially in time, and that they will blossom in an unsynchronized manner. However these differences can be 
reduced to zero by supplying right feedback signal from one system to another system and force the two systems into a 

synchronized behavior such that after developing the chaotic motion, two systems are in stepwise during the course of 

time [4]. 

      After the pioneering work of Peccora and Carroll on synchronization of identical chaotic systems, several algorithms 
[5] have been developed and applied to synchronize two (identical/non-identical) chaotic systems. Among them, Linear 

Active Control algorithm is an effective approach to synchronize two identical (nearly identical) and non-identical 

chaotic systems. 

      Recently, the synchronization problem via Active Control Techniques has attracted great interests among the 
researchers and have been widely accepted as one of the powerful technique used to synchronize two identical as well as 

nonidentical  chaotic systems[6-8]. 

      Chaos synchronization using Active control was proposed by E. W. Bai, et. al., [9] and further developed by A. 

N.Njah & U.E.Vincent [10] . Active Control Technique has recently been accepted as one of the most efficient technique 
for synchronizing both identical and nonidentical chaotic systems because of its implementation to practical systems such 

as Windmi and Coullet systems, Nonlinear Circuit, Chemical Reactors etc. [11-13]. An Active Controller can be easily 

designed according to the given conditions of the chaotic system to accomplish synchronization asymptotically if the 
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nonlinearity of the system is known. There are no derivatives in the controller to execute the controller and this 

characteristic gives an advantage to Active Control Technique over other synchronization approaches. 

      Recently, there has been spiraling interest developed theoretically as well as experimentally to precipitate 3-D chaotic 

oscillators.  The importance of the 3-D differential equations, is that relatively simple 3-D systems could reveal a very 

complex or more specifically chaotic behavior. The 3-dimensional chaotic systems have broad band potential 

applications in different scientific fields [5]. Looking into the wide range of applications of 3-D chaotic systems, various 

3-D chaotic systems have been generated and applied to many practical systems and have shown some useful results [14-

16]. 

 

      In ref [17], the authors studied a new 3-D Autonomous Chaotic System which is based on a quadratic cross product 

term and a quadratic exponential nonlinear term. In ref [17], the authors proposed a novel 3-D chaotic system which is 

topologically different from the Lorenz System. The two-scroll attractor from the new system exhibits multiplex chaotic 

dynamics. The new system shows some typical characteristics of a dynamical system such as Route to Chaos, Stable 

Fixed Points, Period-doubling Bifurcation and quasi-periodic loops etc. In ref [17], the nonlinear dynamical properties of 

the new chaotic system such as Equilibrium Points, Phase Portraits, Lyapunov Exponents, Bifurcation diagram, and 

Poincare mapping etc have been extensively studied. 

      Motivated from above, the main objective of this paper is to utilize the Linear Active Control Technique to study and 

investigate the new results for global chaos synchronization of identical and nonidentical chaotic systems introduced in 

references [17]. Based on Ruth-Hurwitz criterion [18] and Lyapunov Stability Theory [19], a class of Active Control 

Schemes will be designed to achieve the synchronization globally exponentially. Numerical simulations and graphs will 

be imparted to show the performance and effectiveness of the proposed approaches. 

      To the best of our knowledge, the same study has not done before. The rest of the paper is organized as follows: Unit 

2, discusses the problem statement and the proposed methodology. In unit 3, chaos synchronization of identical and 

nonidentical new 3-D chaotic system will be investigated. In unit 4, numerical simulations are furnished to show the 

effectiveness of the proposed methodology.  In unit 5, the concluding remarks will be given. 

 

2. DESIGNING OF A LINEAR ACTIVE CONTROLLER 

The problem of chaos synchronization is to design a coupling between the two chaotic systems such that the chaotic time 

evaluation becomes perfect. The output of the slave (response) system asymptotically follows the output of the master  
(drive) system. 

Consider a master system described by the following differential equation, 

1 1( )x A x F x        (2.1) 

and a  slave system is described as, 

2 2( ) ( )y A y F y t        (2.2) 

Where x, y ϵ Rn are the state vectors, 1 2( ), ( ) : n nF x F y R R are the nonlinear functions and 1, 2

n nA A R  are 

constant system matrices of the corresponding master-slave systems respectively, and '
1( ) Rnt  ' is the control input 

injected to the slave system. 

From systems of equations (3.1.2) and (3.1.3), the error dynamics can be described as: 

e y x         
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     
2 2 1 1( ) ( ) ( )e A y F y t A x F x      

     ( , ) ( )e Be G x y t        (2.3) 

Where,        i 1,2,...,,i i ie y x n  ,  
2 1B A A   is the common parts of the system matrices in master-slave 

systems and 2 1 2 1G( , ) ( ) ( )x y F y F x A y A x     contains the nonlinear functions and non-common terms and  

1

1 2( ) [ ( ), ( ),...., ( )]T n

nt t t t R       is the Active control input . 

If 1 2 1 2   /   ( ) ( ) aF F nd or A A  then x and y are the states of two unified chaotic systems and if 

1 2 1 2   /   ( ) ( ) aF F nd or A A  , then x and y are the states of two nonidentical chaotic systems. 

An appropriate Active feedback controller ' ( )t ' that satisfies the error system converges to equilibrium point (zero), 

i.e,  lim lim ( ) ( ) 0i i i
t t

e y t x t
 

    , , , nx y e R  , 

then the systems (2.1) and (2.2) are said to be synchronized [8]. 

Thus the basic problem in synchronizing two unified/different chaotic systems is to design a proper Active Feedback 

Controller that eliminates nonlinear terms and non-common parts and to contain another linear part to achieve 

asymptotically stability [10].To achieve this goal, let us assume the following theorem. 

Theorem 1. The trajectories of the two (identical or nonidentical) chaotic systems (2.1) and (2.2) for any initial 

conditions,  1 2 1 2(0), (0),...., (0) (0), (0),...., (0)m m nm s s nsx x x y y y will be synchronized asymptotically globally 

with suitable Active Feedback Controller,  
1

1 2( ) [ ( ), ( ),...., ( )]T n

nt t t t R      . 

Proof. Let us suppose that parameters of the master and slave systems are known and the states of both systems   (2.1) 

and (2.2) are measurable.  An appropriate refinement of the Active Feedback Controller deduct the unstable eigenvalue to 

a stable location. The feedback control signal ( )t is constructed in two segments. The first part eradicates the nonlinear 

terms from (2.3) and the second part ( )u t  acts as an external impute to stabilize the error dynamics (2.3). 

i.e.,     ( ) ( , ) ( )t G x y u t     

Where ( ) (y )i iu t Ce C x      is a linear controller and 
n nC R  is a feedback constant gain matrix. Thus the 

error dynamics (2.1.3) becomes, 

( )e Be u t   

     ( )e Be Ce B C e     

     e De         (2.4) 

Where, ( )D B C   is n n matrix. 



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 02 – Issue 01, February 2014 

Asian Online Journals (www.ajouronline.com)  4 

From equation (2.4), if the error dynamics (2.4) is a linear system of the form, e De  and if the system matrix D is 

Hurwitz [18], i.e., if all the eigenvalues of the system symmetric matrix D are negative, then by the Linear Control 

Theory [18], the error signal will be asymptotically stable. 

2.1 Criteria for Globally Exponentially Stability 

      The active control design uses Lyapunov Stability Theory for establishing globally exponentially synchronization 

between the two (identical or nonidentical) chaotic systems. 

Let if we choose a candidate Lyapunov Error Function as: 

( ) TV t e Pe  

where 
1 2( , ,... ) Rn n

nP dig p p p   is a positive definite matrix, where V : Rn → Rn  is a positive definite function by 

construction [11]. 

If an Active feedback controller 
1

1 2( ) [ ( ), ( ),...., ( )]T n

nt t t t R       is designed such that, 

( ) TV e e Qe  , 

then, : n nV R R is a negative definite function [19] and hence the two systems (2.1) and (2.2) will be a globally 

exponentially stable by Lyapunov Stability Theory[19]. 

3.  IDENTICAL SYNCHRONIZATION OF A NEW 3D CHAOTIC SYSTEM [16] VIA ACTIVE 

CONTROL 

 

      System Description: In reference [17], the authors proposed and investigated a new 3D autonomous chaotic system. 

The differential equations for the new chaotic systems is given as, 

1

2 3

4

( )

xy

x a y x

y a x a xz

z e a z

 


  


  

      (3.1.1) 

      where , , nx y z R  are the state variables and 1 2 43  , ,     anda a aa are the parameters of the new system The new 

system [17] exhibits a chaotic attractor for, 1 2 3 410, 40, 2      3ana a da a     with initial conditions  are (2.2, 2.4, 

28) and (4.4, 4.8, 40). 

      For the dynamical properties such as Equilibrium points, Phase portraits, Bifurcation diagram and Lyapunov 

Exponents etc for the system (3.1.1), please study reference [17]. 

      In this section, the aim of the study is to achieve stable synchronization between two identical chaotic systems [17] 

using Active Controller.  To clinch this goal, let us consider the master-slave systems arrangement for the identical 

synchronization of a new system [17] which is described as: 

1 1

1 1 1 1

1 2 1 3 1 1

1 4 1

( )

 

x y

x a y x

y a x a x z

z e a z

 


  


  

   (Master system)     (3.1.2) 



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 02 – Issue 01, February 2014 

Asian Online Journals (www.ajouronline.com)  5 

and 

2 2

2 1 2 2 1

2 2 2 3 2 2 2

2 4 2 3

 

)

 

(

x y

x a y x

y a x a x z

z e a z







  


   


   

  (Slave system)     (3.1.3) 

where 
1 1 1, , nx y z R  are the state variables of the drive system with  1 2 43  , ,     anda a aa are the system parameters and  

2 2 2, , nx y z R  are the state variables of the corresponding response system and 

1

1 2 3( ) [ ( ), ( ), ( )]T nt t t t R       are the Active Feedback Controller. 

From systems of equations (3.1.2) and (3.1.3), the error dynamics can be described as: 

2 2 1 1

1

2 2 1 3 1 1 3 2

1 1 2

2

4

1

2

3 3 3

( )

 

x y x y

e a e a x z a x z

e a

e a e

e

e

e e 







   

    

 





     (3.1.4) 

Where   1 2 1 2 2 1 3 2 1  and   ,e x x e y y e z z       

The control signal 
1( ) Rnt   will be constructed in two phases. In the first phase, the controller will vanish the 

nonlinear terms and in the second phase, it will acts as an external impute ( )u t  to stabilize the error signal. Thus to 

arrive at asymptotically globally synchronization using Active Control, let us assume the following theorem. 

Theorem 2. The two controlled Chaotic Systems (3.1.2) and (3.1.3) will achieve asymptotically, globally 

synchronization for initial conditions ( (0), (0), (0)) ( (0), (0), (0))m m m s s sx y z x y z  with following Active Control 

law: 

1 1 2 2

2 1

2 2 2 1 1 2 2 2

1 1

2 1 3

3 3

( )

) ( )

( )

( ) (

) (( )x y x y

e u t

a e x z x z u t

u

t a

t a e a

t te e





 

   

 



 


 


 

     (3.1.5) 

Proof. Let us assumed that that the states of both systems (3.1.2) and (3.1.3) are measurable and parameters of the master 

and slave systems are known.  Substituting equation (3.1.5) in equation (3.1.4), we have, 

11 1

2 2 2 2

3 4

1

3 3

( )

( )

( )

u t

e a e u t

e a e

e a

t

e

u



  

  

  





        (3.1.6) 

Where,   

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

u d d d e

u d d d e

u d d d e

    
    

     
    
    

     (3.1.7) 

The error system (3.1.6) to be controlled is a linear system with a control input 1 2 3 ,    andu u u as functions of the error 

states 31 2  ,     ande ee respectively where the constants 'ij sd  are known as feedback gains. As long as these feedbacks 

stabilize the error system then 31 2  ,     ande ee converge to zero as time ’t ' tends to infinity [8]. This implies that the two 

unified chaotic systems (3.1.2) and (3.1.3) are synchronized asymptotically. 
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Replacing equation (3.1.7) in equation (3.1.6), we have, 

 

1 1 1 11 12 13 1

2 2 2 21 22 23 2

3 3 4 31 32 33 3

0 0

0 0

0 0

de e a d d d e

e e a d d d e

e e a d d d e

       
       

         
              

 

 

1 1 11 12 13 1

2 21 2 22 23 2

3 31 32 4 33 3

e a d d d e

e d a d d e

e d d a d e

       
    

        
           

     (3.1.8) 

There are number of choices available for the controller coefficient 'ij sd  and the choosing of a (3 3) gain matrix, 

11 12 13

21 22 23

31 32 33

d d d

d d d

d d d

D

 











 should be such that the closed loop system (3.1.6) must have all the eigenvalues with negative 

real parts so that the error dynamics (3.1.6) converges to zero as time t tends to infinity [8]. 

The rate of convergence of the error system is controlled by the numerical value of the coefficients of the feedback gains. 

For the following particular choice of feedback gain matrix and considering, 1 2 4 10, 4 3 0    a a and a   , 

11 12 13

1 21 22 23

31 32 33

8 0 0

0 38 0

0 0 1

 

d d d

D d d d

d d d

   
   

     
      

 

the error system (3.1.8) becomes, 

 

1 1

2 2

3 3

2 0 0

0 2 0

0 0 2

   

e e

e e

e e

    
    

     
        

      (3.1.9) 

 

      From equation (3.1.9), It is clear that the error system (3.1.9) is a linear system of the form, e Be . Thus by linear 

control theory, the system matrix 1D  is Hurwitz [18], and so all the eigenvalues of the system matrix 1D  are negative (-

2, -2, -2). 

To check globally exponentially stability, let us construct a Lyapunov Error Function Candidate as; 

2 2 2

1 2 3

1
( ) ( )

2
V e e e e    

2 2 2

1 1 2 2 3 3 1 11 1 2 22 2 4 33 1( ) ( ) ( ) ( ) ( )V e e e e e e e a d e a d e a d e           

2 2 2

1 2 1( ) 2 2 2 TV e e e e Qe       

Where    

2 0 0

0 2 0

0 0 2

Q

 
 

  
 
 

 which is also a positive definite matrix. 
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Hence the above system (3.1.9) is globally exponentially stable, which implies that the two identical chaotic systems 

(3.1.2) and (3.1.3) are synchronized globally exponentially. 

 

 

 
 

 

 

 
 

 

 

3.2  Nonidentical Synchronization Between New [17] and Li Chaotic Systems 

      To achieve nonidentical synchronization for the new chaotic system [17] using Active Control Strategy, it is assumed 

that the new chaotic system [17] drives the Li Chaotic system [20]. Therefore, the master and slave systems configuration 

is given as; 
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1 1

1 1 1 1

1 2 1 3 1 1

1 4 1

( )

  

x y

x a y x

y a x a x z

z e a z

 


  


  

  (Master system)      (3.2.1) 

and 

2 2 2 1

2 2 2 2 2

2 2 2 2 3

(y )x p x

y y x z

z q x y rz







   


    
    

        (Slave system)    (3.2.2) 

where  1 1 1, ,x y z  ϵ Rn and 2 2 2, ,x y z  ϵ Rn are the corresponding state vectors of drive and response systems respectively, 

1 2 43  , ,     anda a aa are the system parameters of the master system and p, q and r are the system parameters of the slave 

system  and  
1

1 2 3( ) [ ( ), ( ), ( )]T nt t t t R      are the Active Feedback Controller that is yet to be designed. 

The Li system describes a chaotic behavior with the parameters;   5, 1 d r 16 an  p q   . 

From equation (3.2.1) and (3.2.2), the error dynamics can be described as; 

1 1

1 1 1 1 1 1 2 1

2 2 2 1 1 2 2 3 1 1 2

3 4 3 4 2 2 2 3

( )

( )
x y

e pe p a x a y py

e e a x y x z a x z

e a e a r z q x y e







      


     



 


       

     (3.2.3) 

To achieve asymptotically globally synchronization using Active Control, re-defining the controller 

1 2 3( ) [ ( ), ( ), ( )]Tt t t t    as, 

1 1

1 1 1 1 1 2 1

2 2 1 1 2 2 3 1 1 2

4 2 2 23 3

( ) ( ) ( )

( ) ( )

( ) (( ))
x y

t a p x a y py u t

t a x y x z a x z u t

r a z q x yt e u t







    


     


     

     (3.2.4) 

Substituting equations (3.2.4) in equation (3.2.3), we have, 

                    

1 1 1

2 2 2

3 4 3 3

( )

( )

( )

e pe u t

e e u t

e a e u t

  

  

  

                     (3.2.5) 

where,  

1 11 12 12 1

2 21 22 23 2

3 31 32 33 3

u d d d e

u d d d e

u d d d e

    
    

     
    
    

      (3.2.6) 

 

Replacing equation (3.2.6) in (3.2.5), we have, 
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1 1 11 12 13 1

2 2 21 22 23 2

3 4 3 31 32 33 3

0 0

0 1 0

0 0

e p e d d d e

e e d d d e

e a e d d d e

       
       

         
              

 

 

i.e.,  

1 11 12 13 1

2 21 22 23 2

3 31 32 4 33 3

1

e p d d d e

e d d d e

e d d a d e

       
    

        
           

                (3.2.7) 

 
 

 

For the specific choice of feedback gains; 

 

11 12 13

2 21 22 23

31 32 33

4 0 0

0 1 0

0 0 2

d d d

D d d d

d d d

   
   

    
      

 

 

With this particular choice, the error system (2.2.8) becomes, 

1 1

2 2

3 3

1 0 0

0 2 0

0 0 1

e e

e e

e e

    
    

     
        

      (3.2.8) 

 

From equation (3.2.8), It can be seen that the error system (3.2.8) is a linear system of the form, e De . Thus by linear 

control theory, the system matrix 2D  is Hurwitz [18] and so all the eigenvalues of the system matrix 2D  are negative (-

1, -2, -1). 

Now let us construct a Lyapunov Error Function Candidate as: 

2 2 2

1 2 3

1
( ) ( )

2
V e e e e    

then   
2 2 2

11 1 2 4 33 3

1 0 0

( ) ( ) 2 ( ) 0 2 0 0

0 0 1

TV e p d e e a d e e e

 
 

         
 
 

 

Where     

1 0 0

0 2 0

0 0 1

Q

 
 

  
 
 

 

 

Hence the above system (3.2.8) is globally exponentially stable, which implies that the two nonidentical chaotic systems 

(3.1.2) and (3.1.2) are synchronized globally exponentially. 
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4.  NUMERICAL SIMULATIONS 

      Numerical simulations are furnished to validate the advantages and potency of our proposed method. The parameters 

for new chaotic system [17] are taken as, 1 2 3 410, 40, 2  and   3a a a a     where the  initial conditions are (2.2, 

2.4, 28) and (4.4, 4.8, 46). 

      For the Li Chaotic System the parameters are selected as ;  5, 1 d r 16 an  p q    where the initial conditions are 

taken as;  x1(0) = 12, y1(0) = 15,   z1(0) = 7, x2(0) = -5, y2(0) = 0, z2(0) = -10. 

5. CONCLUSION 

      In this paper, global chaos synchronization of an identical and nonidentical new 3-D chaotic system has been 

investigated. Based on Lyapunov Stability Theory and Ruth-Hurwitz Criterion and using the Active Control Algorithm, a 
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class of active controllers are designed to achieve the global stability of the error dynamics. Since the        Lyapunov 

exponents are not required for numerical calculations, Active Control Algorithm is an efficient technique to synchronize 

two identical as well as nonidentical chaotic systems. 

      In this study, using the Active Control Algorithm, it has been shown that the proposed schemes have excellent 

transient performances and that analytically as well as graphically the synchronization is globally exponentially stable. 

Results are also presented in graphical forms with time history (figures 1- 10). 

     Figures 4 and 9 show the synchronization errors of two identical chaotic systems [17] and nonidentical chaotic 

systems [17, 20] respectively.  For the two different chaotic systems ([17] and Li system),  that contain parameters 

mismatch and different structures , the controllers were used to synchronize the states of master and slave systems 

globally exponentially which shows that the proposed controllers are efficient with enough transient speed. 

      Figures 5 and 10 show the derivative of Lyapunov Error Functions of identical and nonidentical chaotic systems [17, 

20] respectively. It has been shown that the error signals converge to the origin very smoothly with minimum rate of 

decay which shows that the error systems (figures 4 and 10) are feedback stabilized and the investigated controllers are 

more robust to accidental mismatch in the transmitter and receiver. 

     Further research on synchronization of this new system [17] can be beneficial to many fields such as, Information 

sciences, Communication, Electricity and Medical sciences etc. 
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