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_________________________________________________________________________________ 

ABSTRACT—This paper presents an efficient way to represent objects. The image of the object is converted into an 

edge image. Important points of the curve are identified by the dominant point detection method. A line segment of 

every two consecutive important points is a categorical line segment or a non-linear line segment. Nonlinear segments 

are fitted as circular arcs. In addition, the compactness of approximate polygons is used as a feature in the shape 

recognition process. Experimental results show that using this new global feature has better recognition performance 

than traditional features such as relative distance, length and angle. Overall the new method is efficient and effective 

in representing and recognizing shapes. 
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1. INTRODUCTION 

Shape recognition is an important problem in many applications. Two broad categories of shape recognition methods 

are statistical methods and syntactic methods. The first method cannot exploit the structural information of the shape, and 

the second method is sensitive to noise. In recent years, some combined methods of statistical methods and syntactic 

methods have been proposed [4, 9, 10, 11, 16]. 

Tsai and Fu [9] combined statistical and syntactic approaches by using attribute grammars. They use three types of 

editing operations to transform one string into another [8]. Furthermore, Tsai and Yu [10] use attributed string matching 

and merging involving more powerful editing operations. By combining operations, the recognition rate can be 

improved. Tsay and Tsai [11] proposed another new split-editing operation for attributed string matching. They use 

approximate polygon lengths and angles as features in recognition. 

The recognition rate can be improved by introducing a new powerful editing operation, but there are three problems 

in the above method: the editing sequence is complicated, the editing cost of these two new editing operations is not easy 

to define, and the reference line needs to be set in terms of calculating the angle, so they are Linear string matching 

technique. Maes [7] proposed a loop string matching technique for polygon shape recognition to solve the above 

problems. He uses only the three normal editing operations required for loop string matching. 

Chang et al. [2] proposed a simplified loop string matching technique. The relative distances of feature points to 

centroids are used as features in their paper. If the number of features of the two matching shapes is the same, the 

recognition rate is better. But this assumption is not practical for most applications. Kaygin and Bulut [5] use vertices 

instead of line segments as primitives. Delete and insert operations are used to achieve the advantages of split and merge 

operations. Their method works, but the calculations seem to be complicated. Bunke and Bühler [1] used the curvature of 

edge pixels as a feature in string matching problems. They use fixed-length line segments to avoid merge operations. 

Chen et al. [3] proposed fuzzy splitting and merging to find initial line segments. Wu and Wang [15] proposed a two-

stage string matching to reduce the effect of uneven segmentation. A feature is the inverse of the compactness of a 

triangle formed by the centroid and two adjacent vertices. Matched vertices are used to evaluate local dissimilarity. 

It is agreed that representation and matching are the two main problems involved in pattern recognition. In many 

industrial applications, round objects are often found everywhere. It is important to identify them during the 

manufacturing process. Over the past few years, many methods for detecting circles have been proposed. 

Detecting dominant points is an important step in many machine vision applications. In image processing and pattern 

recognition, the main points are used to preserve the shape of planar curves and to reduce the amount of data. Many 

algorithms have been developed to detect dominant points. Most of them can be divided into two categories: (1) polygon 

approximation methods and (2) corner detection methods. 

This paper combines principal point detection with circle detection to find a way to represent objects. We propose a 
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new recognition function. Vertices are used as primitives. The characteristic is the compactness of the polygon formed by 

the centroid and three adjacent vertices. Loop string matching is applied to overcome the problem of initial vertex 

determination. Experimental results show that the method is efficient and effective in rendering objects. 

2. FEATURE EXTRACTION 

In general, features for shape recognition should be translation-invariant, rotation-invariant, and scale-invariant (TRS-

invariant). Knowing the principal points on the boundary of the object is sufficient to represent the shape of the object. 

Therefore, we can use information about dominant points to find original features [14]. 

In this paper, the closeness of a polygon composed of three adjacent principal points and the centroid of a shape are 

used as features for shape recognition. Also, features should be normalized so that they are not affected by changes in 

position, orientation, and scaling. 

The proposed feature extraction method consists of four stages: dominant point detection, line segment and arc 

determination, circular arc fitting, and shape representation. 

2.1 Dominant point detection 

Only breakpoints are considered as candidates for dominant points. It will reduce computation time for determining 

support regions and curvature estimation. The principal point is the point with the local maximum curvature. For 

continuous curves, the curvature at a point is defined as the rate of change of the slope as a function of arc length. 

However, the above definition of curvature does not apply to digital curves. Therefore, dominant point detection 

algorithms use information that can be extracted from neighbors to estimate curvature. In this paper, the k cosine of two 

vectors is used as the estimated curvature, which is defined as (see Figure 1): 
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cos ,                                                                                                                                                           

(1) 

where )yy,x(xa ikiikiik  


 is the backward vector, )yy,x(xb ikiikiik  


 is the forward vector,  ˙is the inner 

product operator, and * is the length of the vector. 

 
Figure 1: Estimate curvatures by the k-cosine by three points 

 
Figure 2: The computation of average distance of a segment.  
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2.2 Linear or nonlinear segment determination 

The above-mentioned dominant point detection method can divide the curve into several segments. The next step is to 

classify them into linear and nonlinear parts. In this paper, the average distance from each point to the endpoint is used as 

a criterion to evaluate the distortion caused by the approximate line segment (see Fig. 2). it is defined as 

n
n

i i
dD /

1



 ,                                                                                                                                                                  (2) 

where n is the number of points, di is the distance from Pi to the approximated line segment. 

Since the average distance is smaller, the linearity is better. A line segment with a small average distance is 

considered a linear line segment. Otherwise, it will be treated as a non-linear segment. For example, the curve shown in 

Figure 1 has three dominant points S1 to S3. The segments between S1 and S2 and the segments between S2 and S3 will be 

considered as linear segments. The segment between S1 and S3 will be considered a non-linear segment. Non-linear line 

segments will be candidates for circles. 

 

Figure 3: Circle fitting to find a set of center and radius.  

2.3 Circular arc fitting 

For each nonlinear segment, use the proposed least squares fit to find its estimated center and radius. Figure 3 shows 

the circular results. Suppose that )r̂,ŷ,x̂( cc  is the estimate of (xc, yc, r). Estimated center and radius for a set of n points 

(xi, yi), for i=1, 2, …, n, are given as : 
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Figure 4: Object representation: L1L2C1. 

 

2.4 Shape representation 

In the final stage, objects are encoded by detected line segments and arcs. For the objects in Figure 4, there are three 

main pints. The object consists of two line segments and an arc. Each line segment is represented by two endpoints, and 

the arc is represented by the center and r. 

Let Pi, for i=1,2,...,N, be the ith point whose coordinates are of shape (xi, yi). Important points on shape boundaries 

can be detected by the principal point detection method [14]. Suppose the detected dominant point is Vi, for i=1, 2, ..., M. 

We can find the centroid of the shape C = (xc, yc) by the following equation: 

xc =
N

1
Σxi and yc =

N

1
Σyi.                                                                                                                                               

(6) 

(a) Distance. The distance between the vertex and the object's centroid. Let di be the i th distance and di = CVi  (see 

Figure 5). 
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C

approximated polygon
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line segment of C and Vi

d1

d2

d3d4
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d6

 
Figure 5: The relative distances: di= CVi

, for i=1,2,...,M. 

(b) Length and angle. Approximate polygon lengths and angles. Let li and θi be the length of 1iiVV  and the angle of ∠

Vi-1ViVi+1, respectively (see Figure 6). 
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Figure 6: The length li=
1iiVV  and the angle Θi=∠Vi-1ViVi+1, for i=1,2,...,M, where Vi is the  i th vertex. 

(c) Compactness. In order to avoid two adjacent principal points and the center of mass of the object being on the same 

straight line, the area of the triangle formed by these three points will be zero. We use three adjacent three dominant 

points instead of two adjacent points. Assuming ci is the ith compactness, it is defined as [15] 

ci=
i

2
i

a

p
,                                                                                                                                                                            (7) 

where pi= CVCVVVVV iiiiii 1111    is the perimeter and ai is the area of the polygon (see Figure 7). 

 
Figure 7: The compactness of the polygon: ci= p2/ai, for i = 1, 2,..., M. 

 

3. SHAPE RECOGNITION BY CYCLIC STRING MATCHING 

The cyclic string matching technique was proposed by Maes [6]. Suppose X is a set of symbols. We can define the 

concatenation of symbols s1,s2,…,sn to be the string s. The number of symbols in the string s is called the length of s, 

which can be expressed as |s|. Also, a string of length zero is called the empty string and can be denoted as λ.Suppose s 

and t are two strings and let |s|=n and |t|=m. For a given editing cost function ε, three types of arcs can be defined: 

Insertion. (v(i,j), v(i,j+1)) with weight w0,j+1= ε(λ,tj+1), for i=0, 1,..., n, and j=0,1,...,m-1. 

Deletion. (v(i, j),v(i+1, j)) with weight wi+1,0= ε(si+1,λ), for i=0, 1, ..., n-1, and j=0,1,..., m. 

Change. (v(i, j), v(i+1, j+1)) with weight wi+1,j+1=ε(si+1,tj+1), for i=0,1,...,n-1, and j=0, 1,..., m-1. 
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Figure 8: The edit graph G for |s| = 5 and |t| = 4, and the shortest path. 

 

Now we can define the edit graph associated with s and t as  a weighted graph G (see Figure 8) with vertices v(i, j), for 

i=0,1,...,n, and j=0,1,...,m. Wagner and Fischer [12] showed that the problem of finding the sequence of minimum-cost 

edits that bring s into t is now reduced to finding the shortest path in G from v(0, 0) to v(n, m). Wong and Chandra [13] 

showed that the above algorithm will have optimal O(mn) computation time. Examples of shortest paths and their 

corresponding editing sequences are shown as bold lines in Figure 8. 

For the cyclic string matching problem, the problem now is to find the edit distance δ([s],[t]) and its corresponding 

edit sequence, where [s] and [t] are the cyclic strings of s and t, respectively. It's known as the circular string-to-string 

correction problem. In general, it is assumed that m≤n. Also, assume that the strings s and t are cyclic strings. The edit 

distance is defined in Maes [7]: 

δ([s], [t])=min{δ(s,σj(t)): j=0, 1, …,m-1},                                                                                                                      

(8) 

where σj(t) is the string obtained from t after j cyclic shifts. 

To find the edit distance, suppose that tt=t1t2…tmt1t2…tm is the string which concatenates t with itself. The edit graph 

H associated with s and tt can be shown as in Figure 9. We can find the shortest path from v(0, j) to v(n, m+j), for 

j=0,1,...,m-1 in Figure 9. And the edit distance δ(s,σj(t)) can be determined. Further, the minimum edit distance can be 

found and its corresponding edit sequence can be identified. Maes [6] showed that the above algorithm can be done in 

O(mn ㏒ m) computation time. 

To find the edit distance, suppose tt=t1t2…tmt1t2…tm…tm is the string concatenating t with itself. The edit graph H 

associated with s and tt can be shown in Figure 9. We can find the shortest path from v(0, j) to v(n, m+j) for j=0,1,... ,m-1 

in Figure 9. The edit distance δ(s,σj(t)) can be determined. Further, the minimum edit distance can be found and its 

corresponding edit sequence can be identified. Maes [6] showed that the above algorithm can be completed in O(mn ㏒

m) computation time. 
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Figure 9: The edit graph H associated s and tt, the edit sequence the best matched pair, and the shortest path . 
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After principal point detection is performed on a shape, it can be approximated by a polygon of vertices [14]. The 

relative distances, lengths, and angles of polygons, as well as the compactness of polygons can be computed by the 

definitions in Section II. Additionally, we can obtain normalized values of these features. 

Assume I and R are the input shape and the reference shape, respectively. Approximate polygons of shapes are also 

denoted IA and RA. Suppose n and m are the number of vertices of IA and RA respectively. We know that features can be 

represented as symbols, so we can use these strings to represent shapes. That is, we can use the strings s=s1s2…sn and 

t=t1t2…tm, where si and tj, for i=1,2,...,n, j=1,2,...,m , are the eigenvalues representing the input shape and the reference 

shape, respectively. Let X be the set whose elements are features. Since each feature of a polygon is cyclic, the problem 

of matching two shapes is the same as the problem of cyclic string matching of strings s and t. 

Given an editing cost function ε, we can construct an editing graph H associated with s and tt as shown in Figure 9. 

Further, the shortest path can be determined, and the minimum edit distance in cyclic string matching is called the 

matching cost. 

Maes [7] gives the cost function by using length and angle as features: for all x, y X, 

ε(x→y)=















s,otherwinse

lengths, arey  and x ifyxw

angles, arey  and x ifyx
                                                                                                                     

(9) 

ε(x→λ)=ε(λ→x)=





length, a is x f

angle,an  is x if

ixw

x
 

where w  is a weighting factor. 

The above formula is very simple, but the main problem is that an appropriate weight factor w must be selected 

during calculation. Choosing an appropriate set of weights is not easy when using length and angle as raw features. In 

this paper, we do not have the problem of choosing an appropriate weighting factor because only one feature 

(compactness) is used in string matching. Let X be a set whose elements are compact (including 0), and let the value of λ 

be zero. Then, for all x,y X , the cost function can be simplified as: 

ε(x→y)=|x-y|.                                                                                                                                                                 

(10) 

4. RESULTS AND DISCUSSIONS 

To evaluate the proposed method, an experiment is designed to test the performance of the new features. For 

comparison, two other general features, namely relative distance and length and angle, were also evaluated. 

Therefore, this experiment had to evaluate three distinct features in string matching. The edit cost defined in (10) 

is only for 1D features. Not applicable to two-dimensional features such as length and angle. So, here, the cost 

function for length and angle features is defined as: 

ε(x→y)=
2

1
(|x1-y1|+|x2-y2|),                                                                                                                          

(11) 

where x=(x1, x2)=(length, angle) and the setting of y is similar to x.  

 

Also, features should be normalized to be independent of scaling. Suppose fi is the ith feature and fi  is its normalized 

value. The three normalization methods are defined as follows: 

(a) Divided by the maximum value:  

fi =
f

f

max

i , where maxf=max{fi}.                                                                                                                           

(12) 

(b) Divided by the sum:  

fi =
fsum

f i , where sumf =Σfi.                                                                                                                                         

(13) 

(c) Normalized to [0, 1]: 
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(d) fi =

ff

fi

max

minf

min


, where maxf=max{fi} and minf =min {fi}.                                                                                     

(14) 

  

Therefore, we have 3×3 = 9 different feature combinations. The 10 test images are shown in Figure 10. In the 

experiments, identification is first performed on each test set. Since a good shape recognition method should be able to 

correctly classify shapes in different orientations and zoom ratios. Here, for each shape, 100 test images of different 

orientations and scales are grabbed for recognition. Therefore, a total of 12 × 100 = 1200 test images are used in the 

experiment. A cyclic string matching algorithm is applied to each test image. An error is logged when it is misclassified. 

The recognition rate can then be calculated. 

The experimental results for the test shapes in Fig. 10 are shown in Table 1. The data listed in Table 1 are the 

recognition rates of nine combinations of feature settings and normalization methods. It is easy to see that the recognition 

rate using compactness as the recognition feature is very high (above 92%). 

In addition, the recognition rate was found to be low when relative distance or length and angle were used as features. 

The way to improve the recognition rate of these two features is to set some parameters in the recognition process. 

However, parameter setting is not an easy task and may be very tedious. In addition, the recognition rates using relative 

distance, length, and angle as features vary greatly under different normalization methods. For example, using length and 

angle as features, the recognition rate is the largest at 81% when normalized to [0, 1], but the recognition rate is poor 

(75%) when normalized with the sumf method. Using compactness as a feature in a loop string matching algorithm has 

very high and consistent recognition rates. This is a very useful feature for recognizing the shapes in Figure 10. 

 

Table 1: Comparison of recognition rates (%) for testing shapes in Figure 6. 

 Normalization Method   FEACTURES 

 di  li&Θi  ci 

 maxf 83 79 96 

 sumf 86 75 95 

 [0, 1]f  89 81 92 

 

 
Figure 10: The testing images of the 12 screws. 

 

In order to evaluate the proposed method, another set of images were tested in the experimens. They are the gear 

images consisting of line segments and circular arcs. Figure 11(a) is the original images. Figure 11(b) shows the edgy 

images. The experimental results show that the method is efficient and effective in presenting objects. 
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(a)                                   (b) 

Figure 11: Gear images: (a) original images, (b) edgy images. 

5. CONCLUSIONS 

This paper proposes a simple shape recognition method. We propose a method for representing objects. The proposed 

method consists of four stages: dominant point detection, line segment and arc determination, circular arc fitting, and 

shape representation. Experimental results show that the method is efficient and effective in rendering objects. In 

addition, the compactness of approximate polygons is used as a feature in the shape recognition process. Experimental 

results show that using this new global feature has better recognition performance than traditional features such as 

relative distance, length and angle. Furthermore, the new features do not require any parameters to be used in shape 

recognition. Therefore, the proposed method is more robust to changes in size or rotation. 
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