Effect of a <em>Pseudomonas fluorescens</em>-based Biofertilizer on Sweet Potato Yield Components


  • Alexander Santana-Fernández University of Cienfuegos, Cienfuegos, Cuba
  • Yoel Beovides-García Biotechnology Directorate, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Cuba
  • Jaime E. Simó-González Development Directorate, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Cuba
  • María C. Pérez-Peñaranda Unit Development and Innovation, Biological-Pharmaceutical Laboratories (LABIOFAM), Cuba
  • Jorge López-Torres Biotechnology Directorate, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Cuba
  • Aymé Rayas-Cabrera Biotechnology Directorate, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Cuba
  • Arletys Santos-Pino Biotechnology Directorate, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Cuba
  • Milagros Basail-Pérez Biotechnology Directorate, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Cuba




biofertilizer, plant nutrition, sustainable agriculture, sweet potato crop


A field experiment was conducted to study the effect of a Pseudomonas fluorescens-based biofertilizer on sweet potato (Ipomoea batatas (L) Lam) yield. The application was by immersion of cuttings before sowing for 0, 5, 10 and 15 minutes with combination doses of 0, 50 and 100% of NPK mineral fertilizer in a randomized block design with three replications (12 treatments-combinations). During the harvest (130 days after planting), some measurements related to yield components were recorded on ten randomly selected plants from each plot. All treatments with Pseudomonas’ immersion showed a positive productive response. With 100% NPK and the immersion in the biofertilizer for 15 min showed the highest yield (56.09 tha-1), followed by the other treatments with 100% NPK and without statistical differences among them. The treatment with 50% NPK and the immersion in Pseudomonas for 15 min (49.58 tha-1) had no statistical differences with the control variant (100% NPK, 51.60 tha-1). Based on the results, it can be concluded that this biofertilizer could be an appropriate alternative to increase the sweet potato yield, saving the 50% of the current quantity of the recommended mineral fertilizer, through a more friendly environmental techniques to promote a sustainable, efficient and productive agriculture.


Suprasanna P. 2020. Plant abiotic stress tolerance: Insights into resilience build-up. J. Biosci. 45: 120.

Lebot V. 2019. Sweet potato: agronomy; in Tropical root and tuber crops: cassava, sweet potato, yams and aroids (eds) J Atherton and A Rees (Oxford: CABI, 2nd Edition Chapter 12) pp. 139–150.

FAOSTAT 2019. Production, Crops, Sweet potato, 2017 data. FAOSTAT | © FAO (Food and Agriculture Organization) Statistics area 2019. Retrieved from: http://faostat.fao.org/site/567/default.aspx#ancor, [Accessed: 24/11/2019].

Uwah D.F., Undie U.L., John N.M. and Ukoha G.O. 2013. Growth and yield response of improved sweet potato (Ipomoea batatas (L) Lam) varieties to different rates of potassium fertilizer in Calabar, Nigeria. J. Agric. Sci. 5: 61–69.

Ruiz L., Simó J., Rodríguez S. and Rivera R. 2012. Las micorrizas en cultivos tropicales. Una contribución a la sostenibilidad agroalimentaria (Ed Académica Española, España) 239 p.

Kareem I. and Akinrinde E.A. 2018. Impact of phosphorus release dynamics on sweet potato production. Sci. Agri. 21(1) 26-34.

Ruiz L.A., Carvajal D., Espinosa E., Simó J., Rivera R. and Espinosa A. 2015. Efecto de las micorrizas y bioplaguicidas sobre cultivares de raíces y tubérculos en un suelo pardo mullido carbonatado. Rev. Agric. Trop. 1(1) 1-6.

Pérez J. and Sánchez D. 2017. Caracterización y efecto de Azotobacter, Azospirillum y Pseudomonas asociadas a Ipomoea batatas del Caribe Colombiano. Rev. Colomb. Biotecnol. 19(2) 35-46.

Fundora L.R., Cabrera J.A., González J. and Ruiz L.A. 2009. Incrementos en los rendimientos del cultivo de boniato por la utilización combinada del fitoestimulante Fitomas-E y el biofertilizante ECOMIC® en condiciones de producción. Cult. Trop 30(3):14-17.

Peña K., Rodríguez J.C., Olivera D., Meléndrez J.F., Rodríguez L., García R. and Rodríguez L. 2017. Effect of growth promoter on different vegetable crops. Int. J. Dev. Res. 7(2): 11737-11743.

Adeyeye A.S., Akanbi W.B., Sobola O.O., Lamidi W.A. and Olalekan K.K. 2016. Comparative effect of organic and in-organic fertilizer treatment on the growth and tuber yield of sweet potato (Ipomoea batatas L). Int. J. Sustain. Agric. Res. 3(3): 54-57.

Singh J., Sharma M.K., Singh S.P., Bano R. and Mahawar A.K 2018. Effect of organic and inorganic sources of NPK and bio-fertilizer on enhancement of growth attributes and chlorophyll content of sweet potato. Int. J. Curr. Microbiol. App. Sci. 7(9): 3659-3667.

Imperiali N., Chiriboga X., Schlaeppi K., Fesselet M., Villacrés D., Jaffuel G., Bender S.F., Dennert F., Blanco R., van der Heijden M.G.A., Maurhofer M., Mascher F., Turlings T.C.J., Keel C.J. and Campos R. 2017. Combined field inoculations of Pseudomonas bacteria, arbuscular mycorrhizal fungi, and entomopathogenic nematodes and their effects on wheat performance. Front. Plant Sci. 8: 1809.

Nieto P. 2016. Pseudomonas, microorganismos de biocontrol en agricultura. Control Bío, Retrieved from: https://controlbio.es/es/blog/c/92_pseudomonas-microorganismos-de-biocontrol-en-agricultura.html, (Accessed: 6/11/2018)

Madigan M. and Martinko J. 2019. Brock Biology of Microorganisms. Pearson (ed) 15th edition, Pearson Educational Limited (Pearson Global Edition. Harlow, UK) 1056 p.

Pérez M.C., Oramas J., Sotolongo E.A., Miranda A., Román Y. and González A. 2019. Optimización del medio de cultivo y las condiciones de fermentación para la producción de un biofertilizante a base de Pseudomonas fluorescens. Biot. Veg. 19(2): 127–138.

Hernández J.A., Pérez J.J.M., Bosch I.D. and Castro S.N. 2015. Clasificación de los suelos de Cuba (Ed. INCA, Cuba) 93 p.

INIVIT. 2012. Instructivo técnico para la producción de semillas de viandas. Martínez E (ed.) Instituto de Investigaciones de Viandas Tropicales (INIVIT) (Ministerio de la Agricultura, Cuba) 162 p.

CIP, AVRDC, IBPGR. 1991. Descriptores de la batata. Huamán, Z. (ed.) International Board for Plant Genetic Resources (IBPGR), Rome, Italy. 132 p

Morales, A. 2018. Caracterización morfo-agronómica de la colección de batata (Ipomoea batatas (L.) Lam.) de CORPOICA, Colombia. Tesis en opción al Grado de Master en Agricultura Sostenible, Facultad de Ciencias agropecuarias, Universidad Central Marta Abreu de Las Villas, 98 p.

SPSS. 2012. SPSS STATISTICAL, Version 15.0. for Windows. [Online] Retrieved from: www.ibm.com, (Accessed: 18/09/2020)

Dumbuya G., Sarkodie-Addo J., Daramy M.A. and Jalloh M. 2017. Effect of vine cutting length and potassium fertilizer rates on sweet potato growth and yield components. Int. J. Agric. For. 7(4) 88-94

Ezziyyani M., Requena M., Pérez-Sánchez C. and Candela M. 2005. Efecto del sustrato y la temperatura en el control biológico de Phytophthora capsici en pimiento (Capsicum annuum L.) An. Biol. 27: 119-126.

Jorquera M.A., Shaharoona B., Nadeem S.M., Mora M.L. and Crowley D.E. 2012. Plant growth-promoting rhizobacteria associated with ancient clones of Creosote Bush (Larrea tridentata). Microb. Ecol. 4: 1008-1017.

Sarma R.K. and Sarkia R. 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa Ggrj21. Plant soil. 1-2: 111-126.

Rahmoune B., Morsli A., Khelifi-Slaoui M., Strueh A., Erban A., Kopka J., Prell J. and van Dongen J.T. 2017. Isolation and characterization of three new PGPR and their effects on the growth of Arabidopsis and Datura. Plants J. Plant Inter. 1: 1-6.

Ranjbar-Moghaddam F. and Aminpanah, H. 2015. Green bean (Phaseolus vulgaris L.) growth and yield as affected by chemical phosphorus fertilizer and phosphate bio-fertilizer. Idesia 33(2): 77-85.

Azafal I., Khan Z., Sikandar S. and Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 221: 36-49.

Perotti E.B.R., Menéndez L.T., Gaia O.E. and Pidello A. 2005. Pseudomonas fluorescens survival in soils with different contents of organic matter. Rev. Argent. Microbiol. 37(2): 102-105.

Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda M.C. and Glick B.R. 2016. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183: 92-99.

Oliveira A.P., Santos J.F., Cavalcante L.F., Pereira W.E., Santos M.C.C.A., Oliveira A.N.P. and Silva N.V. 2010. Yield of sweet potato fertilized with cattle manure and biofertilizer. Hortic. Bras. 28: 277-281.

Wang Y.., Zhang X., Wang L., Wang C., Fan W., Wang M. and Wang J. 2019. Effective biodegradation of pentachloronitrobenzene by a novel strain Peudomonas putida QTH3 isolated from contaminated soil. Ecotox. Environ. Safe. 30(182): 109463.

Alfonso E.T., Ruiz J. and Tejeda T. 2010. Efecto de un bioproducto a base de Pseudomona aeruginosa en el cultivo del tomate (Solanum licopersicum Mill). Rev. Colomb. Biotecnol. XII(1): 32-38.

Abdel-Razzak H.S., Moussa A.G., Abd-El-Fattah M.A. and El-Morabet G.A. 2013. Response of sweet potato to integrated effect of chemical and natural phosphorus fertilizer and their levels in combination with mycorrhizal inoculation. J. Biol. Sci. 13: 112–122.

Alane F., Moussab Karima B., Chabaca R. and Abdelguerfi A. 2019. Characterization of two oasis luzerns (El Menea, Tamentit) at the floral bud and early flowering stages. Environ. Anal. Eco. Stud. 6(3): EAES.000638.2019.

Halpern M., Bar-Tal A., Ofek M., Minz D., Muller T. and Yermiyahu U. 2015. The use of biostimulants for enhancing nutrient uptake. In: DL Sparks (Ed) Adv Agron (San Diego, CA: Elsevier) pp 141–174.

Van Oosten M.J., Pepe O., De Pascale S., Silletti S. and Maggio A. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4: 5.

Yakhin O.I., Lubyanov A.A., Yakhin I.A. and Brown P.H. 2017. Biostimulants in plant science: a global perspective. Front. Plant Sci. 7: 671.

Tadele Z. 2019. Orphan crops: their importance and the urgency of improvement. Planta, 250: 677–694.

Castillo C., Huenchuleo M., Michaud A. and Solano J. 2016. Micorrización en un cultivo de papa adicionado del biofertilizante Twin-N establecido en un Andisol de la Región de La Araucanía. Idesia (Arica). 34(1): 39-45.




How to Cite

Santana-Fernández, A., Beovides-García, Y., Simó-González, J. E., Pérez-Peñaranda, M. C., López-Torres, J., Rayas-Cabrera, A., Santos-Pino, A., & Basail-Pérez, M. (2021). Effect of a <em>Pseudomonas fluorescens</em>-based Biofertilizer on Sweet Potato Yield Components. Asian Journal of Applied Sciences, 9(2). https://doi.org/10.24203/ajas.v9i2.6607