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ABSTRACT— The efficiency of Carnot engine, an important machine in classical thermodynamics, depends only on 

the temperatures of source and sink reservoirs and is independent of the nature of the working substance. There are 

several real gas equations which may be used to verify this statement. Here we choose three real gas equations viz. Van 

der Waal’s, Berthelot’s and Clausius’s real gas equation of state for simplicity for this verification. 
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1. INTRODUCTION 

It is well known that heat of itself will not pass from a lower to a higher temperature and the machine we need is a heat 

engine consisting of three essential parts, viz. a source, a sink and a working substance. The efficiency of a heat engine   

is defined as the ratio of output work W and input heat energy Q as 

     =
Output work

Input heat
=

W

Q
= 1 −

Q2

Q1
      (1) 

Here the system absorbs heat Q1 from the source; a part of it is converted into work W and rest of it is rejected to the 

sink Q2. Efficiency  depends on the nature of the working substance, the source at higher temperature, the sink at lower 

temperature and a working cycle. 

Due to inadequacy of ideal gas equation to real gaseous systems literature survey [1-4] gives different empirical real 

gas equations, viz. Van der Waal’s equation, Berthelot’s equation, Clausius’s equation, Dieterici’s equation, Redlich and 

Kwong’s equation, Saha and Bose’s equation and Beattie and Bridgeman’s equation. Van der Waal’s, Berthelot and 

Dieterici’s equations are of limited accuracy. Redlich and Kwong’s equation gives good results at high pressure and is 

fairly accurate for temperatures above the critical value. Saha and Bose’s equation of state is quite accurate for densities 

less than about 0.8 times the critical density. 

All the standard text books use ideal gas equation of state for verification. But nowhere details of thermodynamic laws 

were used. We here made an extensive use of mathematical and thermodynamical skill to verify the independence of real 

gas equations as the nature of working substance. For simplicity out of all we took one mol of only three different real gas 

equations as working substance, viz. (i) Van der Waal’s real gas equation, (ii) Berthelot’s real gas equation and (iii) 

Clausius’s real gas equation of state and extensively used Maxwell’s first TdS relation for this verification in the following 

sections. 

In this novel pedagogic work we shall first discuss in short the essence of Carnot engine; next the importance of specific 

heat at constant volume CV; the necessity of Maxwell’s TdS relation and finally we shall calculate the efficiency of Carnot 

engine in three different real gas systems. 

2. CARNOT ENGINE 

 
Figure 1 
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Carnot engine is an ideal engine consisting of following parts. (i) Heat source at higher temperature T1. (ii) Heat sink 

at lower temperature T2. (iii) A working substance may be any type of fluid, real or ideal. (iv) A suitable machine known 

as Carnot machine [1-2] which is a cylinder with perfectly non-conducting walls and perfectly conducting bottom so that 

heat exchange can take place through bottom only. The cylinder is fitted with a non-conducting piston which is weightless 

and its motion within the cylinder is frictionless. (v) A working cycle known as Carnot cycle. It is a reversible cyclic 

process consisting of four successive changes, viz. (a) isothermal expansion, (b) adiabatic expansion, (c) isothermal 

compression and (d) adiabatic compression. After these four changes the system comes back to the original state. 

Generally in ideal Carnot engine we take one mole of monatomic ideal or perfect gas. Let us take one mole of 

monatomic ideal gas within the cylinder of Carnot engine, a source at temperature T1 and a sink at temperature T2 with 

T1>T2. The initial configuration of the gas is shown in PV and TS indicator diagram of figure 1 at point A with coordinate 

(P1,V1,T1). 

 

Figure 2 

Let the cylinder be placed over the source at temperature T1 (figure 2A). Now to make a quasi-static isothermal 

expansion the piston is slowly moved in the outward direction. As the piston moves outward, temperature tends to fall and 

some heat will pass from the source to the cylinder. So the temperature of the cylinder always remains same as T1 and the 

representative point on the indicator diagram (figure 1) moves from A with coordinate (P1,V1,T1) to B with coordinate 

(P2,V2,T1) along the isothermal curved path. The heat extracted in this isothermal process of expansion is equal to work 

done by the gas W1 and it is  Q1 = W1 = ∫ PdV
B

A
= RT1ln

V2

V1
    (2) 

The source is now removed from the bottom and the cylinder is placed over a non-conducting material cap (figure 2B).  

Now the piston is allowed to move slowly and outwardly by inertia of motion. So no heat exchange will take place in this 

quasi-static adiabatic process and the temperature falls to T2. The representative point on the indicator diagram (figure 1) 

moves from B with coordinate (P2,V2,T1) to C with coordinate (P3,V3,T2) along the adiabatic path. The net work done W2 

in this adiabatic process of expansion will be  W2 = ∫ PdV
C

B
=

R(T2−T1)

γ−1
   (3) 

This is because 𝑃Vγ = constant and PV = RT for one mole of monatomic ideal gas. 

Since pressure is now very much diminished the gas has lost its expansive power (figure 2C). So we now replace the 

non-conducting cap from the bottom of the cylinder by the sink at temperature T2 and compress the gas isothermally along 

the curved path CD with coordinate of D is (P4,V4,T2). In this isothermal compression heat developed Q2 will now pass to 

the sink and it is equal to the work done W3. Thus Q2 = W3 = ∫ PdV
D

C
= −RT2ln

V3

V4
       (4) 

The negative sign indicates that heat has been rejected by the gas to the sink. 

The cylinder is now again placed over the non-conducting cap and a slow adiabatic compression is done on it due to 

inertia so that the gas returns to the original state at A through the adiabatic path DA (figure 2D). The work done W4 in 

this case is    W4 = ∫ PdV
A

D
=

R(T1−T2)

1−γ
      (5) 

Now since B and C are on the same adiabatic path so 
T1

T2
= (

V3

V4
)γ−1. Similarly A and D are on another adiabatic path 

and 
T1

T2
= (

V4

V1
)γ−1. So the total work done by the engine in this cycle is 

    𝑊 = W1 + W2 + W3 + W4 = R(T1 − T2)ln
V2

V1
    (6) 

The total heat absorbed by the system is Q1 − Q2 = W. So Carnot engine satisfies first law of thermodynamics because 

in a cyclic process ∮ dU = 0. The calculated efficiency of Carnot engine is 

     = 1 −
Q2

Q1
= 1 −

RT2ln
V3
V4

RT1ln
V2
V1

= 1 −
T2

T1
      (7) 
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3. WHY CV VARIATION IS IMPORTANT 

The above standard procedure can be set aside keeping in view that the laws of thermodynamics and Maxwell’s 

relations are integral part of classical thermodynamics. To illustrate we note that CV the specific heat of real gas at constant 

volume is not a constant as is so in case of ideal gas and also in case of Van der Waal’s real gas. This is due to the fact that

      (
CV

V
)𝑇 = T(


2P

T2)𝑉     (8) 

So it is now essential to use Maxwell’s first TdS relation to account for this variation and so we write 

     dQ = TdS = CVdT + T(
P

T
)VdV     (9) 

Here we apply Carnot cycle in TS diagram of figure 1 from point A with coordinate (S1,T1), to B with coordinate 

(S2,T1), to C with coordinate (S2,T2), to finally D with coordinate (S1,T1) to Van der Waal’s, Berthelot’s and Clausius’s 

real gas equation of state for simplicity for this verification [5-7]. 

 

4. VAN DER WAAL’S REAL GAS 

Although up to 1850, most scientists believed strictly the simple equation of state PV = RT, but Regnault argued 

differently. Van der Waal’s (1873) approximate real gas equation of state [6,8] for one mole, written as (P +
a

V2) (V − b) =

RT, had shown that the cubic equation of state accounted for the essential properties of fluids, and in particular, it predicted 

the existence of a critical point. Although his equation represented the phenomena in its broad aspect, it left much to be 

desired from a quantitative point of view. For adiabatic expansion and contraction of real gas CV
 
varies with volume V as 

(
CV

V
)𝑇 = T(


2P

T2)𝑉  and for Van der Waal’s gas (
CV

V
)𝑇 = T[


2

T2 (
RT

V−b
−

a

V2)]𝑉 = 0 gives CV = f(T). Now the first TdS 

relation for reversible isothermal expansion for Van der Waal’s gas can be written as 

    TdS = dQ = T (
P

T
)

V
dV = T [



T
(

RT

V−b
−

a

V2)]
V

dV =
RTdV

V−b
   (10) 

We apply this to Carnot cycle in TS diagram of figure 1 from point A with coordinate (P1,V1,T1) or (S1,T1) to B with 

coordinate (P2,V2,T1) or (S2,T1) to calculate the heat extracted will be 

    Q1 = ∫ TdS
B

A
= ∫

RT1dV

V−b

V2

V1
= RT1ln

V2−b

V1−b
     (11) 

For the second isotherm in TS diagram of figure 1 from point C with coordinate (P3,V3,T2) or (S2,T2) to D with 

coordinate (P4,V4,T2) or (S1,T1) to calculate the heat released will be 

    Q2 = ∫ TdS
D

C
= ∫

RT2dV

V−b

V4

V3
= RT2ln

V4−b

V3−b
     (12) 

For the other two isentropic or adiabatic from B to C and D to A we get from first law of thermodynamics and equation 

(10)   dQ = 0CVdT = −T (
P

T
)

V
dV − f(T)dT =

RTdV

V−b
 

Integrating factor of this equation with  𝑚 = f(T)   and  𝑛 =
RT

V−b
   is  𝑛−1 [

m

V
−
n

T
] = −T−1. We make the above 

equation total differential as   
f(T)dT

T
= −

RdV

V−b
 

Or,    d[g(lnT) + Rln(V − b) = 0 

Or,    g(lnT) + Rln(V − b) = constant = c 

Or,    m = f(T) = c − g(lnT) = Rln(V − b)     (13) 

Hence at B and C f(T1) − f(T2) = Rln
V2−b

V3−b
. Similarly for D and A f(T2) − f(T1) = Rln

V4−b

V1−b
. Thus combining these 

two we get   ln
V2−b

V3−b
= −ln

V4−b

V1−b


V1−b

V2−b
=

V4−b

V3−b
      (14) 

So for Van der Waal’s gas  
Vdw

= 1 −
Q2

Q1
= 1 −

RT2ln
V4−b

V3−b

RT1ln
V2−b

V1−b

= 1 −
T2

T1
    (15) 
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5. BERTHELOT’S REAL GAS 

Berthelot asked if in order to explain the deviations between the equation and the experimental results, it was necessary 

to modify the evaluation of the internal pressure or that of the co-volume and to eliminate many of the limitations of the 

Van der Waal’s equation Berthelot studied of the properties of gases and fluids and developed a real gas equation [9] for 

one mole (P +
a

TV2) (V − b) = RT. This probably was the basis for the development of the Redlich-Kwong equation of 

state (Redlich and Kwong, 1949). The first TdS relation for reversible isothermal expansion for Berthelot’s gas can be 

written as  TdS = dQ = T (
P

T
)

V
dV = T [

R

V−b
+

a

T2V2] dV   (16) 

Now for adiabatic expansion and contraction of real gas CV varies with volume V as  (
CV

V
)T = T(


2P

T2)V and for 

Berthelot’s gas  (
CV

V
)T = T[


2

T2 (
RT

V−b
−

a

TV2)]V = −
2a

T2V2  gives  CV = f(T) +
2a

T2V
.  We apply this to Carnot cycle in TS 

diagram of figure 1 from point A with coordinate (S1,T1) to B with coordinate (S2,T1) to calculate the heat extracted will 

be    Q1 = ∫ TdS
B

A
= ∫ [

RT1

V−b
+

a

T1V2] dV
V2

V1
= RT1ln

V2−b

V1−b
    (17) 

For  the second isotherm in TS diagram of figure 1 from point C with coordinate (S2,T2) to D with coordinate (S1,T1) 

to calculate the heat released will be Q2 = ∫ TdS
D

C
= ∫ [

RT2

V−b

V4

V3
+

a

T2V2]dV = RT2ln
V4−b

V3−b
   (18) 

For the other two isentropic from B to C and D to A we get from first law of thermodynamics 

     dQ = 0CVdT + T (
P

T
)

V
dV = 0 

Or,     [f(T) +
2a

T2V
] dT + T [

R

V−b
+

a

T2V2] dV = 0 

Integrating factor of this equation with  𝑚 = f(T) +
2a

T2V
  and  n =

RT

V−b
+

a

TV2  is  n−1 [
m

V
−
n

T
] = −T−1.  We make the 

above equation total differential as  [f(T) +
2a

T3V
] dT + T [

R

V−b
+

a

T2V2] dV = 0 

Or,     d [
a

T2V
− Rln(V − b) − g(lnT)] = 0 

Or,     
a

T2V
− Rln(V − b) − g(lnT) = constant = c 

Or,     f(T) = g(lnT) − c =
a

T2V
− Rln(V − b)    (19) 

Hence at B  f(T1) =
a

T1
2V2

− Rln(V2 − b)  and at C   f(T2) =
a

T2
2V3

− Rln(V3 − b).  Thus  f(T1) − f(T2) =
a

T1
2V2

−
a

T2
2V3

−

Rln
V2−b

V3−b
.  Similarly for D and A  (T1) − f(T2) =

a

T1
2V1

−
a

T2
2V4

− Rln
V1−b

V4−b
 .  Equating we get 

    Rln
V2−b

V3−b
−

a

T1
2V2

+
a

T2
2V3

= Rln
V1−b

V4−b
−

a

T1
2V1

+
a

T2
2V3

 

Or,    Rln
V4−b

V3−b
−

a

T2
2 [

1

V4
−

1

V3
] = Rln

V1−b

V2−b
−

a

T1
2 [

1

V1
−

1

V2
] 

Or,     
Rln

V4−b

V3−b
−

a

T2
2[

1

V4
−

1

V3
]

Rln
V2−b

V1−b
−

a

T1
2[

1

V2
−

1

V1
]

= 1         (20) 

Now for Berthelot’s real gas  
Ber

= 1 −
Q2

Q1
=

RT2ln
V4−b

V3−b
−

a

T2
[

1

V4
−

1

V3
]

RT1ln
V2−b

V1−b
−

a

T1
[

1

V2
−

1

V1
]

= 1 −
T2

T1
   (21) 

 

6. CLAUSIUS’S REAL GAS 

One criticism of the van der Waal equation is that no account is taken of the possibility that parameters a and b 

can depend on temperature. Clausius [10] suggested the equation (P +
a

T(V+c)2) (V − b) = RT in which 

intermolecular attraction is described as inversely proportional to temperature (Normal Clausius’s real gas 

equation uses c0). But here first TdS relation for reversible isothermal expansion for Clausius’s gas can be 

written as   TdS = dQ = T (
P

T
)

V
dV = T [

R

V−b
+

a

T2(V+c)2] dV    (22) 
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Now for adiabatic expansion and contraction of real gas CV varies with volume V as (
CV

V
)𝑇 = T(


2P

T2)𝑉 and for 

Clausius’s real gas  (
CV

V
)T = T[


2

T2 (
RT

V−b
−

a

T{V+c}2)]V = −
2a

T2(V+c)2  gives   CV = f(T) +
2a

T2(V+c)
.  We apply this to 

Carnot cycle in TS diagram of figure 1 from point A with coordinate (S1,T1) to B with coordinate (S2,T1) to 

calculate the heat extracted will be 

 Q1 = ∫ TdS
B

A
= ∫ T(

P

T
)VdV

V2

V1
= ∫ [

RT1

V−b
+

a

T1(V+c)2] dV
V2

V1
= RT1ln

V2−b

V1−b
−

a

T1
(

1

V2+c
−

1

V1+c
)  (23) 

For  the second isotherm in TS  diagram of figure 1 from point C with coordinate (S2,T2) to D with coordinate 

(S1,T1) to calculate the heat released will be 

 Q2 = ∫ TdS
D

C
= ∫ T(

P

T
)VdV

V4

V3
= ∫ [

RT2

V−b
+

a

T2(V+c)2] dV
V4

V3
= RT2ln

V4−b

V3−b
−

a

T2
(

1

V4+c
−

1

V3+c
)  (24) 

For the other two isentropic or adiabatic from B to C and D to A we get from first law of thermodynamics  

    dQ = 0CVdT + T (
P

T
)

V
dV = 0 

Or,    [f(T) +
2a

T2(V+c)
] dT + T [

R

V−b
+

a

T2(V+c)2] dV = 0 

Integrating factor of this equation with m = f(T) +
2a

T2(V+c)
  and n =

RT

V−b
+

a

T(V+c)2 is n−1 [
m

V
−
n

T
] → −T−1. We 

make the above equation total differential as 

    − [
f(T)

T
+

2a

T3(V+c)
] dT − [

R

V−b
+

a

T2(V+c)2] dV = 0 

Or,     d [F(lnT) + Rln(V − b) −
a

T2(V+c)
] = 0 

Or,    F(lnT) + Rln(V − b) −
a

T2(V+c)
= constant = c 

Or,    f(T) = c − F(lnT) = Rln(V − b) =
a

T2(V+c)
     (25) 

Hence at B  f(T1) = Rln(V2 − b) −
a

T1
2(V2+c)

  and at C  f(T2) = Rln(V3 − b) −
a

T2
2(V3+c)

.  Thus 

    F(T1) − f(T2) = Rln
V2−b

V3−b
−

a

T1
2(V2+c)

+
a

T2
2(V3+c)

 

Similarly for D and A  f(T1) − f(T2) = Rln
V1−b

V4−b
−

a

T1
2(V1+c)

+
a

T2
2(V4+c)

 

Equating we get  Rln
V2−b

V3−b
−

a

T1
2(V2+c)

+
a

T2
2(V3+c)

= Rln
V1−b

V4−b
−

a

T1
2(V1+c)

+
a

T2
2(V3+c)

 

Or,    Rln
V4−b

V3−b
−

a

T2
2 [

1

V4+c
−

1

V3+c
] = Rln

V1−b

V2−b
−

a

T1
2 [

1

V1+c
−

1

V2+c
] 

Or,     
Rln

V4−b

V3−b
−

a

T2
2[

1

V4+c
−

1

V3+c
]

Rln
V2−b

V1−b
−

a

T1
2[

1

V2+c
−

1

V1+c
]

= 1         (26) 

Considering absolute value we get for Clausius’s real gas equation 

    
Cla

= 1 −
Q2

Q1
=

RT2ln
V4−b

V3−b
−

a

T2
[

1

V4+c
−

1

V3+c
]

RT1ln
V2−b

V1−b
−

a

T1
[

1

V2+c
−

1

V1+c
]

= 1 −
T2

T1
    (27) 

 

7. DISCUSSIONS AND REMARKS 

(i)  If 𝑇1 → 𝑇2 we have  → 0. So no machine can work if the source and sink are at the same temperature. It 

proves that perpetual motion of second kind is impossible. 

(ii) If 𝑇1 ≫ 𝑇2, i.e. if 𝑇2 → 0 then  ≤ 1. So efficiency of a Carnot engine is always less than unity and its 

maximum ideal value is unity. 

(iii) If 𝑇1 = 𝑇 and 𝑇2 = 𝑇 − 𝑑𝑇, then   =
𝑑𝑊

𝑑𝑄
=

𝑑𝑇

𝑇
. 

(iv) Q1 = RT1ln
V2

V1
 and Q2 = RT2ln

V3

V4
= RT2ln

V2

V1
 gives the definition of entropy as 

Q1

T1
=

Q2

T2
= Rln

V2

V1
. 

(v) Efficiency of Carnot engine depends only on the temperatures of source and sink . So this engine is 

independent of the nature of the working substance. 

8. CONCLUSION 

Three simple and old real gas equations are tested here to show the independence of working substance as any 

real gas. From one real gas to other variation of specific heat at constant volume C V show different forms. This 

makes great difficulties to show independence of working substance. For the reason we use Maxwell’s first TdS 

relation. The method used here is a good pedagogic problem for different real gas equations. It is a good 
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undergraduate problem for students and more such may be visualized. People will generally encourage the young 

scientific brains to cop up with new and novel pedagogic works based on their skill to nurture undergraduate 

physics. 
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