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_________________________________________________________________________________ 

ABSTRACT— Entropy based k-Nearest Neighbor pattern classification (EbkNN) is a variation of the conventional  

k-Nearest Neighbor rule of pattern classification, which exclusively optimizes the value of k -neighbors for each test 

data based on the calculations of entropy. The formula for entropy used in EbkNN is the one that has been defined  

popularly in information theory for a set of n different types of information (class) attached to  a  to tal o f m ob jects 

(data points) with each object defined by f features. In EbkNN that value of k is chosen for discrimination of given test 

data for which the entropy is the least non-zero value. Other rules of conventional kNN are retained in EbkNN. It  i s 

concluded that EbkNN works best for binary classification. It is computationally prohibitiv e to use EbkNN for 

discriminating the data points of the test dataset into number of classes greater than two. The biggest advantage of 

EbkNN vis-à-vis the conventional kNN is that in one single run of EbkNN algorithm we get optimum classification of 

test data. But conventional kNN algorithm has to be run separately for each of the selected range of values o f k , and  

then the optimum k to be chosen from amongst them. We also tested our EbkNN method on WDBC (Wisconsin 

Diagnostic Breast Cancer) dataset. There are 569 instances in this dataset and we made a random choice of first  290 

instances as training dataset and the rest 279 instances as test dataset. We got an exceptionally remarkable result with 

EbkNN method- accuracy close to 100% and better than the ones got by most of the other researchers who worked on 

WDBC dataset.  
 
Keywords— Binary classification, Euclidean distance, Training dataset, Information 
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1. INTRODUCTION 

    Pattern analysis in which class is to be assigned to a given unknown data or test data based on the known classes o f 

training data, and in which no definite form of the mapping function (mapping class to the data) can be found, is  mos t  

popularly referred to in the mathematical/statistical literature as nonparametric discrimination (NPD). kNN (k-Neares t  

Neighbor) is the easiest, and yet powerful, machine learning algorithm for NPD [1,2,3]. The seeds of the kNN were sown 

first in a technical report [4] by Evelyn Fix and J.L. Hodges, Jr. Suppose the classification is between two sets of 

population: one from data points  with probability density  and the other from data points  

with probability density ; the assigning of class to a new data point  depends on the likelihood ratio 

                                                                (1) 

     The problem arises with equation (1) when we do not exactly know  but instead have to use their estimates. In  [4] 

the authors suggest several estimates of for different problems for both parametric and nonparametric discrimination, 

like, for example kernel density estimation. In the field of nonparametric discrimination, they were, however, the firs t  in  

the world to give the nearest neighbor estimates of , and thereby lay the foundation of kNN. 

The work done on 1-NN (single nearest neighbor) and kNN in [4] was further extended in the works [5,6,7,8,9,10]. 

In [10], it was shown that for any sample size , the single-Nearest Neighbor rule has a lower probability o f erro r than  

the kNN for certain classes of distributions. [10] also made it clear that there are two extremes of classification p rob lem 

normally encountered, they are either parametric or nonparametric. The parametric problems are the ones in  which  the 

underlying statistical distribution of the observables are known. For the nonparametric problems certain common s ense 
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based approaches may be made with regard to the decision rule, otherwise, strictly speaking there can be no op timal 

decision rule for this case. [10] states the lemma of the convergence of the nearest neighbor. Let   be the 

set of independent identically distributed random variables in the metric space  classified into  classes but  with  no  

underlying statistics. Let an unclassified random variable   has as its closest neighbor  form the s et  . 

Then  tends to  with probability one. This lemma holds for any metric, including the Euclidean , defined over the 

observables. 

     There can be several different types of distance metrics that can be computed amongst the data points of the t rain ing 

dataset and that between the query point and the data points of the training data, and the performance of the kNN 

classification depends on the way the distance metric is defined in particular application [11]. The distance metric mos t  

popularly used in the kNN classification is the Euclidean distance which treats the data points as vectors and neglects any 

statistical relationship that can be fitted to the classification example. However, it has been shown in several works that if 

the distance metric is trained to learn from the statistical distribution fitting the labelled data, there is an improvement  in  

the performance of the kNN classifier many-folds [12,13,14]. [11] is an advancement over the works by [12,13,14], and  

in this work the authors propose the learning  Mahalanobis distance metric. The learning  Mahalanobis distance metric is  

a linear transformation of the space of the training dataset in such a way that it brings about two  key  changes in  the 

conventional Euclidean distances calculated between the data points. 

1. Firstly the large Euclidean distances between the two particular data points of the same class are op t imized  in  

the new metric to show a small distance 

2. Secondly the small Euclidean distances between the two particular data points belonging to two different classes 

are magnified in the new metric to show a large distance 

Making the distance metric learn this way ensures that the k nearest neighbors of the unclassified data belong to the same 
class. 

      Before we move ahead with s tudying many more literature to introduce the problem dealt with in  th is  work, let  us  

first summarize the conventional kNN method as it is known today. Consider a typical NPD problem wherein   is  the 

unlabeled data to be assigned the class from the knowledge of training dataset of  data points segregated into  classes, 

each data point being defined by the value of  features. Then the kNN method is all about finding k nearest neighbors to 

 from the training dataset for a certain fixed k which can be typically varied from 1 to  [1]. The neighbors are defined 

as those data points which are close to each other, the extent of closeness being quantified by the Euclidean distance (Ed) 

between the data points. The Ed between  and the data point  from the training dataset is calculated by the formula 

 
where  is the value of feature  for unlabeled data  and  is the value of feature  for the data point  from the 

training dataset. Such Ed is calculated between  and each of the  data points from the training dataset, denote th is set 

of Euclidean distances { . For a chosen k, the k data points from the training dataset corresponding 

to the k smallest Euclidean distances from the set {  are grouped together. Then the class o f the 

unlabeled data is the class of the majority of the data points in this group.  

     Despite its simplicity and power, the conventional kNN method posed two serious questions to the researchers over 

the years 

1. The method is computationally expensive for large sample size and or many-dimensional features because one 

has to calculate the distances of the unlabeled data from all the data points in the train ing dataset. Then how 

does one optimize the computational cost ? 

2. Which k should one chose for classification ? This is obvious that as k is varied in any g iven  part icular NPD 

problem, the performance of the kNN too may vary. It is intuitive that the optimum k which has a higher 

probability of giving correct classification will vary from one situation to the other, like, for example, even 

between different unlabeled data points within the same NPD problem.  

For achieving computational economy some of the works provided structure to the training dataset 

[15,16,17,18,19,20,21]. A few of the alternate approaches to achieve computational economy, wherein the focus is  on  

reducing the size of the labeled dataset, are [3,22,23,24,25]. In [22], Hart proposed selecting the subset S from the whole 

training dataset T such that 1NN (1-Nearest Neighbor) with S discriminates the data points almost as accurately as 1NN 

does with T. This way he removed the redundant data subset from the whole training dataset, and  there by achieved 

computational economy. RNN (Reduced Nearest Neighbor rule) [23] is a refinement of CNN (Condensed Nearest 

Neighbor rule) [22], wherein the data points from the subset S of the whole training data set T selected by CNN are 
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removed one by one to check whether the resulting reduced subset of subset S discriminates T correctly.  [24] p roposed  

selecting three very small training subsets out of the whole training data set, and then classifying the test data in each  of 

these three training subsets by 1NN sub-classifier; the final classification being done by simple voting scheme to achieve 

a high accuracy. [25] did a careful study that given the training data set T, which data po ints must be removed from T to  

get the subset S which discriminates T in a way so as not to affect the generalization accuracy and noise tolerance. They 

proposed 6 algorithms DROP1-DROP5 and DEL, DROP standing for Decremental Reduction Optimization  Procedure 

and DEL standing for Decremental Encoding Length. DROP1 is derived from RNN [23] with the difference that once a 

data point is removed from S to get new S it is checked whether this reduced S discriminates itself correctly rather than 
checking whether this reduced S discriminates T correctly.  

Next we are concerned with the problem of  optimizing k in kNN. There are two ways to achieve the performance 

uniqueness in kNN: either get rid of k or fix k for each test or unlabeled data. The work that gets rid of k is by Sinha [26]; 
he calls the resulting method ANN (Alternative Nearest Neighbor). However, this (getting rid of k) is  no t  the focus o f 

this paper. In this paper we discuss a new algorithm EbkNN (Entropy-based k Nearest Neighbor), which we have found 
to optimize k for each given test data. But before we do that let us look at literature for some algorithms that optimizes  k 
in kNN. [27] defines a new informative metric that tells how informative a particular data point from the training data set 

in the vicinity of unlabeled data is. The idea of informativeness is that highly informative points in the v icin ity o f tes t 
point have same class and are far from the points having dissimilar class. Ideally it is required that the informative metric  
be calculated for all the points in the training data set, but then the assignment of class to the test point based on 

informativeness will become computationally very expensive. So Song et al in [27] proposed two algorithms  of NPD 
based on informativeness: LI-kNN (Locally informative kNN) and GI-kNN (Globally informative kNN). In LI-kNN 

firstly k nearest neighbors to the test point are chosen based on Euclidean distances and then out of these k neighbors the 
class of the most informative point is assigned to the test point. The GI-kNN differs from LI-kNN in that the neighbors 
are chosen not based on Euclidean distance but based on weighted Euclidean distance in an iterative algorithm. [2] d id  

bootstrap sampling of the training example and combined the technique with nearest neighbor classifier and  found  that  
they got better performance than conventional kNN. [28] and [29] conducted text categorization studies with a variety o f 
machine learning algorithms, one among them being kNN. They took k values so large as 30, 45 and 65; and found  that 

the performance of the kNN on Reuters versions 3 and 4 was one of the best. There are a plethora of other literature that 
solves the problem of  optimizing performance of kNN by fixing k [30,31,32,33]. But because our method (EbkNN) i s  

not related in any way to either of these previous works, I merely make a mention of them here and do not discuss them. 
Also because our work (EbkNN)  is neither an advancement over these works [27,2,28,29,30,31,32,33] nor is  derived  
from them, we do not immediately conclude or claim in this paper that EbkNN outperforms a subset of these and is 

inferior to the rest. Moreover, we do not state in this paper any mathematical theorem giving the lower and upper bounds 
on the probability of error of EbkNN. We have a strong belief that when NPD problems are to  be s olved by common 
sense, any amount of mathematical attempts to justify/rationalize the solution remain inert to the actual performance of 

the NPD method over real datasets. It is highly likely that what mathematics will infer may not reflect in actual 
application. So our main focus in this paper is to make the reader understand and appreciate EbkNN method 

exhaustively. One must take note of the simplicity and power of the method. Thereafter, we also apply  the method to real 
breast cancer dataset and evaluate its performance. Our target is to achieve a high accuracy in breast cancer diagnosis by 
the EbkNN method. Let us see if we can do that. The breast cancer diagnosis is binary classification between whether the 

tumor is malignant or benign. Benign tumors are harmless and do not metastasize upon the passage o f t ime, whereas 
malignant tumors metastasize with the passage of time if left medically unattended to. Ideally we should have combined 
the features of either of the works [3,22,23,24,25] into our method to take care of computational expenditure, but to keep  

things simple and to impart a better understanding of the EbkNN method to the reader we have not done so.  

 

2. THE EBKNN METHOD 

    If there is a set of  different types of information attached to a total of  objects with each object defined by  

features/attributes, the entropy  of this set of objects is defined mathematically in information theory [34] as  

 

where  is the proportion of objects with information . Interpreting the above information theory for the typical NPD 

problem in which the  data points are classified into  classes, the classes are the  types of information and the data 

points are the  objects. Hence the above equation for entropy holds for the stated typical NPD problem with   being  

the proportion of data points of class .  
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     The EbkNN method is all about selecting a single unique value of k nearest neighbors to classify the query point, and  

as the name of the method suggests this is done based on the calculations of entropy. Just as we calculated entropy above 

for the entire training data set, we calculate entropy for each of the individual values of k. So the fundamental idea in  

EbkNN is that we chose that value of k for classification for which the entropy is the least. However, th is  fundamental 

idea needs a little modification, given that for a certain  (which means that all the data points grouped together fo r 

a certain k has same class), . This means that for k=1, definitely . Therefore, the actual EbkNN method is that  

we choose that k for classification for which the entropy is the least non-zero value. Hence, 1-Nearest Neighbor decision 

rule is not integrated into EbkNN. The EbkNN method can be applied to classification of data points into any number o f 

classes. But for the number of classes greater than 2, it is obvious that the method will be computationally very 

expensive. Hence in this paper we will be applying this method to binary classification only,  as convenient 

simplifications can be done in computation.   

     In a binary classification problem let, out of k nearest neighbors, are the number of data points belonging to class 1, 

and  are the number of data points belonging to class 2. Note that, in this method, the neighbors are determined by  

calculating Euclidean distances- the conventional distance metric most popularly used in the kNN algorithm. Then  fo r 

this problem 

 

 
By varying and  over a range of natural numbers and doing calculation of entropy it is not hard to  observe  that  as 

anyone smaller out of the two proportions and  reduces the entropy reduces. In other words, the greater the deviation 

between and , the smaller the entropy. For example consider the following two cases 

Case 1: ,  

 
Let entropy for this case be  

Case 2:  

 
Let entropy for this case be  

It can be inferred immediately that . This can be verified by calculation.  

So, for binary classification problem, one need not explicitly calculate entropy for each value of k. Instead, that value o f 

k be chosen for classification for which the smaller of the two proportions and  is the least amongst all values o f k 

considered. This is a very big simplification in computation for the EbkNN method. However, this liberty is not available 
in EbkNN computations for the NPD problem with greater than two number of classes. 

     For k= , where  is the sample size of the training dataset classified into two classes, an important question to ask is  

that ideally what should be and  or and  in the EbkNN method. Note that entropy is equal to  1, the maximum, 

for =  = 0.5. Hence we will choose the training dataset in a particular NPD problem in such a way that  is even and 

 We do this because then k=  will definitely not be the optimum k for classification.  

     Before we go ahead and apply the EbkNN method to the actual NPD problem, there is one last issue that needs 

attention. What is the range of values of k for which we need to calculate entropy or the deviation  ? k=1 is  

definitely ruled out. k=2 is also ruled out because then  is either 1 or 0, i.e. entropy is either 0 or 1 respectively . 

So at the lower end of the range we begin with that k>=3 for which . Let us denote this value . For the 

higher end of the range, suppose that at a particular instance . Then  . 

Let the entropy at this instance be E. From this stage as k  is increased in increments of 1, further suppose that  

 remains static where as it is  which increases in steps of 1. As this happens entropy will first increase up to 1 when  

,  being the new value of  after successive increments. Thereafter it (entropy) will reduce, and 

suppose that it becomes exactly equal to E for . If  be the new proportion of data points belonging to class 

2 for new k =  , then 

 

or  

or  

If , continue further 
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It is obvious that the instance k =  that I am talking about above s hould  be the one s uch that   is  

maximum from amongst the subset of set {k| k=1,2,….,m}. For of the order of hundreds let us take this subset of 

length 10, i.e., for every set of 10 ‘k’ values beginning from the minimum k =  we find that k for which  is 

maximum and check if  . The moment , that will be the higher end of the range of k for which  

we need to compare entropy or . Once the optimized k is chosen this way the assigning of class to the unlabeled 

data is still done based on the majority voting of the classes of data points from amongst this  (op timized) g roup of  k 
nearest neighbor data points.  

 

3. COMPUTER EXPERIMENTS WITH WDBC DATASET 

     The real dataset on which we run the EbkNN and the kNN method in this work is the WDBC (Wisconsin Diagnost ic 

Breast Cancer) dataset from the UCI machine learning repository. Dr. William H. Wolberg, W. Nick Street, and  Olv i L. 

Mangasarian are the creators of this dataset. There are 569 data points in this dataset, and 32 columns. The first column is 

the patient ID. The second column is diagnosis: B for Benign and M for malignant. The rest 30 columns have t he values 

of 30 features. However, effectively there are only 10 basic features - radius, texture, perimeter, area, smoothness, 

compactness, concavity, concave points, symmetry, and fractal dimension. Actually what are these 10 bas ic featu res ? 

During the biopsy procedure to detect whether the abnormal lump or mass of cells formed in the breast is tumor or not, a  

fine needle aspirate of few numbers of cells from the lump or mass is taken and observed  under micros cope. During  

microscopic examination measurements of these 10 basic features of the cell are made. Columns 3 to 12 (in  the W DBC 

dataset) are respectively the mean values of these 10 features, columns 13 to 22 are respectively the standard error (s .e.) 

of these 10 features and columns 23 to 32 are respectively the worst values of these 10 features. Everyone knows what is  

meant by mean, so I should not define it here. Standard error (s.e.) is given by  

 
where  is standard deviation and  is number of sample points in the data. It is actually the difference between accurate 

mean and the observed mean. Worst is the mean of three of the largest values of concerned feature. Standard  erro r by  

itself has no meaning; specially it is highly likely that it has directly no role to play in the diagnosis. But with  it s  effect  

included in mean, it will surely have a role to play in the diagnosis. So now the important question- How do we include 

the effect of standard error in mean ? We add the mean of a particular feature say feature1_mean to the standard erro r o f 

that feature say feature1_se to get the upper limit on the value of feature say feature1_ul. Similarly we subtract from the 

mean of a particular feature say feature1_mean  the standard error of that feature say feature1_se to get the lower limit on 

the value of feature say feature1_ll. Mathematically 

feature1_ul = feature1_mean + feature1_se 

feature1_ll = feature1_mean – feature1_se 

We did so for all the basic 10 features mentioned above, and created a new data file “processed_data.csv” . Co lumn 1 o f 

this file is index beginning from 0, column 2 is patient ID, column 3 is diagnosis, columns 4 to 13 is the mean  of the 10 

features mentioned above, columns 14 to 23 is the standard error of the 10 features mentioned above, columns 24 to 33 is  

the worst values of the 10 features mentioned above, column 34 is blank, columns 35 to 44 is the upper limit  o f the 10 

features mentioned above, and columns 45 to 54 is the lower limit of the 10 features mentioned above. While calculating 

the Euclidean distances, both for EbkNN and kNN, we considered only the features in columns 24 to 33, columns  35 to  

44, and columns 45 to 54.  

     While selecting the training subset out of a set of 569 instances, we could have used the results of either of the works  

[3,22,23,24,25] . But we did something else. Because 569 is a big number we considered that the training subset so large 

as a little over 50% of the whole set should be sufficient to capture almost all possible variations of values o f features. 

Then we will run EbkNN and kNN over this subset as training data and the rest as test data. In next step, whatever 

misclassifications we get in the first step will be removed from the test data and included in the training data. This sounds 

somewhat like [22], but is far different from it. The major difference being that the training subset is chosen randomly  in  

this work, given the large number of instances.  

     First 290 instances (145 benign and 145 malignant instances) are chosen as training data and the rest 279 instances 
are test data. We call it experiment 1. What performance measure is the most important in diagnosis  o f d is ease ? It  is  

accuracy and the accuracy of any diagnostic tool should ideally be 100%. Hence, in this work too the only performance 
measure we will be interested in is accuracy. And our aim in this work will be to take accuracy as close as possible to  
100%.  
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4. RESULTS 

4.1 Experiment 1 

    The accuracy of EbkNN method = 92.1147 %. The optimized value of k for EbkNN method which we compute for 

assigning class to the test data point by majority voting varied from so small as 5 to as large as 98, the results of all 279 

test data points considered.   
The accuracy of kNN (k=5) method = 92.1147 % 

4.2 Experiment 2 

     The misclassified data points in EbkNN for experiment 1 are data point nos. 298, 299, 341, 348, 364, 376, 380, 386, 

407, 414, 431, 449, 466, 473, 477, 482, 492, 509, 514, 533, 537, and 542. 

The misclassified data points in kNN for experiment 1 are data point nos. 298, 299, 341, 348, 364, 376, 380, 386, 407, 

422, 431, 466, 473, 477, 482, 492, 509, 514, 519, 533, 537, and 542. 

We now include these misclassifications in training data and remove them from the test dataset. So, for both EbkNN and  

kNN, the training data has 312 data points and the test data has 257 data points. Note that in EbkNN method for 

experiment 2 the number of benign samples (=162) and the number of malignant samples (=150) are not equal. So, a 

natural question to ask is that if this skew can cause the optimum k to be 312 for any one part icular test data. Let  us  

convince ourselves that this will never be the case here before we go ahead. The biggest (for meaning of  and 

, refer section 2) can be as small as 0.34 if optimum k = 3 in the application of EbkNN method to any dataset, which is  

definitely greater than  value (=12/312=0.03846) for optimum k = 312 in the application of EbkNN method  to  

this dataset here in experiment 2.   

The accuracy of EbkNN method = 98.8327 % (3 errors from amongst 257 test data points) 
The accuracy of kNN (k=5) method = 98.0545  % (5 errors from amongst 257 test data points) 

4.3 Experiment 3 

      If there are large number of features defining the data points of a given dataset, we can combine these features in  a  

manner so that each combined component (called the principal component) is orthogonal to every other combined 
component. This process of feature extraction or dimensionality reduction is called Principal Component Analysis (PCA) 
[1]. We will not go into the details of PCA as this is not the focus of this paper. But the reason that I am talking about it  

here is that we also did PCA of the data file “processed_data.csv” with entries in columns 24 to 33, 35 to  44, and  45 to  
54; and the number of principal components into which the features were extracted were 5, 10 and 15 respectively . W e 

thereafter chose first 290 instances of  “processed_data.csv” as training data and the rest 279 instances as test  data and 
classified the test data with the application of the EbkNN method. Then we also included the misclassified  test  data in  
training dataset (as in experiment 2) and ran the EbkNN method again. The accuracies that we obtained for all the th ree 

PCA components 5, 10 and 15, were far less than that obtained in experiment 2. Hence we do not make a mention of the 
results of this experiment here. 
 

5. CONCLUSIONS 

     The accuracies of the EbkNN method and kNN (k=5) method are same for experiment 1, where as in experiment 2 the 

accuracy of the EbkNN method was better than that of the kNN (k=5). This means that in going from experiment  1 to  

experiment 2 there was no over-fitting of the data in EbkNN; EbkNN showed better noise tolerance than kNN. It is 

possible that for both experiment 1 and experiment 2, the kNN method may perform the best for k other than 5. But  fo r 

this we have to run the kNN algorithm separately for a range of values of k. This is the disadvantage of the conventional 

kNN algorithm, which we have overcome in our newly found EbkNN method. In single run of the EbkNN method we 

pick the optimum k separately and exclusively for each test data. Anyhow we already found a high enough accuracy, as  

close to 100% (98.8327%) as possible, with the EbkNN method. This accuracy is the best from amongst  the works  o f 

other researchers on WDBC dataset [35,36,37,38,39,40,41,42,43] that the authors of this paper know of. The work by  

[43] is the closest that it gets to our work. Their best accuracy is 98.62% for kNN with chi-square based feature selection. 

We are sad that we failed to further improve our accuracy of 98.8327% with PCA. PCA seldom fails and  it  is  amazing  
that PCA failed here.  

     It is not so that we did not do feature selection/extraction in experiment 1 and experiment 2. Calcu lat ing  the upper 

limit values and the lower limit values of the 10 basic effective features in WDBC dataset was a part o f the p rocess o f 

feature extraction only. No other researcher till now has done so with the WDBC dataset and we proudly claim that  we 

are the first one in world to do so, and it reaped fruits for us. The feature extraction that we did in experiment 1 and 
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experiment 2, however, was not the one which reduced number of features. Why the EbkNN method gave such 

promising result with the WDBC dataset is a matter for investigation by mathematicians and statisticians alike. 

 

     It was serendipity that we discovered high accuracy of the EbkNN method in breast cancer d iagnosis. However, it  

does not follow that the EbkNN method will demonstrate similar performance for other datasets. In fact, the performance 

of any machine learning algorithm over any dataset is dependent on the internal statistical structure of the dataset. Hence 

for different datasets the machine learning algorithm which shows the best performance will be different.    
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