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ABSTRACT— We provide a proof that the permanents of certain tridiagonal matrices are natural numbers in a k-

Jacobsthal sequence. As a consequence, such matrices are convertible. 
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1. INTRODUCTION 

There are several studies on representing famous sequences of natural numbers as permanent of matrices. We start the 

article by discussing a few major ones. In [9] and [10], Bozkurt and Yilmaz consider one type of an n n  upper 

Hessenberg matrix of odd order  
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and define one type of lower Hessenberg matrix 
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For any natural number n . The study shows that permanents of these matrices can be realized as Pell numbers, Fibonacci 

numbers, Lucas numbers and their sums. 

Similarly, in [2], Gulec studies an n n  tridiagonal matrix 
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and proves that 

     2,  , ,n
n n nperH s t perH s t q s t   

 where  ,nq s t  is the n  th  ,s t  Pell Lucas number. 

 As a more intricated example, in [8], Minc considers a (0,1)n n -matrix for which the ,i j entry is 1 when 

1 1i j i k     and 0 otherwise for 1k n  . Namely, 

 

1 1 1 0 0 0 0

1 1 1 1 0 0 0

0 1 1 1 1 0 0

( , ) .0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

F n k

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
His main result states that   1, ,k

nper F n k g   where 
k
ng  is the n th generalized order-k Fibonacci number, for  i k . 

There are related researches on representing famous sequences as the permanent of tridiagonal matrices in 

[1,3,4,5,6,7]. In this article, we explore another type of tridiagonal matrices whose permanent result to the k-Jacobsthal 

sequence. We then show that the matrices are convertible. 
 

2. MAIN RESULTS 
 

Definition 1. Let [ ]n ij n nG g   be a tridiagonal matrix given by 1, , 1, 1, 2ii i i i ig k g g      for 1 i n   and 0 

otherwise. Thus 
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 This article aims to prove that this given nG has the permanent value in the k-Jacobsthal sequence. 
  

Definition 2. For any natural number ,n let nS be the symmetric group on {1, 2,3,..., }n  and 1 2( , ,..., )nj j j j be the 

element of this group. Then the permanent of an n-square matrix [ ]ij n nA a   is  

 

1 21 2 ...  ,
nj j nj

allj

perA a a a 

 
 

where the summation extends over all permutations j  in nS .  

Definition 3. Let , 0n k  .Then, the k-Jacobsthal sequence  ,
ˆ

k n
n

j


 is defined by   

, , 1 , 2
ˆ ˆ ˆ2 ,k n k n k nj kj j    

with initial conditions ,0 ,1
ˆ ˆ0, 1k kj j  . 

Namely, it is the sequence  

2 3 4 2 5 30,1,  ,  2,  4 ,  6 4,  8 12 ,  ...k k k k k k k k k      . 
 

Since the permanent of a matrix is as complex as the determinant, we will approach the problem by contractible 

matrices to gradually compute its value. For this reason, we define the following technical definitions below. 
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Definition 4. An m n  matrix [ ]ijA a with row vectors 1 2,  , ...,  mr r r  is contractible on column k  if this column 

contains exactly two nonzero element.  
 

Definition 5. If [ ]ijA a is contractible on column k  whose nonzero entries on column k  are , ik jka a , define the 

contraction of A on column k  relative to rows i  and j  to be an    1 1m n    matrix :ij kA
 
obtained from A replacing row 

i   with , ik jka a  and deleting row j  and column k  is called the contraction of A on column k  relative to row i  and j . 

Example 1. 

Consider the matrix 
 

1 2 0 1

3 4 2 0
.

1 2 3 5

0 7 4 2

A

 
 
 
 
 

 
  

Since 22 32  0a a   A is contractible on column 2. Replacing row 2 with 32 2 22 3a r a r , we get 

           21 ( 2)(3) (4)(1) 2a        

           22 ( 2)(4) (4)( 2) 16a         

           23 ( 2)(2) (4)(3) 8a       

             24 ( 2)(0) (4)(5) 20a     ,  

which transform the matrix to 
 

1 2 0 1

2 16 8 20
.

1 2 3 5

0 7 4 2

 
 
 
 
 
 

 

 

After removing row 3 and column 2, we get 
 

1 0 1

2 8 20

0 4 2

 
 

 
    

 

as contraction of A on column 2 relative to row 2 and 3.  
 

Proposition 1. Let A be a nonnegative integral matrix of order 1n  . If B is a contraction of A then 
 

.perA perB  
 

Theorem 1. Let n  be a natural number and ,
ˆ

k nj  be a k-Jacobsthal sequence. Then  

 

2
, 1

ˆ ,n
n n k nperG perG j

 
 

 

for which matrices 
r
nG  obtained by contracting nG r times for any 1 2.r n         

Proof We will prove by Mathematical induction. It is obvious when 1n  that  1G k . Therefore,  

1 ,2.ˆ
kperG k j   

For 2,n   we see that 2

2

1

k
G

k

 
  
 

, so
2

2 ,32 ˆ .kperG k j      

Now for 2,n  we use induction on ,l  the number of contractions performed to show that 
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for any 3 4.l n      
For 1,l  since 11 21, 0,g g 

 
we can contract nG on column 1.  

Firstly, 1r  is replaced by 21 1 11 2 ,g r g r  and 

            11 1( ) (1) 2g k k k    

                                                                              
2

12 1(2) ( ) 2g k k k     

                 13 1(0) (2) 2g k k    

            14 1(0) (0) 0g k    

            

            
   1 1 0 0 0.ng k     

It follows immediately that 
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Let us remove row 2 and column 1 from H to get the ( 1) ( 1)n n   contraction matrix 
1 ,nG   
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Now, assume that 
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, 

 

then, 
l
nG  is contractible on column 1, so we replace the first row by 21 1 11 2g r g r  to see that 

           
11 , 2 , 2

ˆ ˆ(1) (1)k l k la j j     

           
12 , 1 , 2

ˆ ˆ(1)(2) ( )k l k la j j k    

           
13 , 2

ˆ(1)(0) (2)k la j    

           
14 , 2

ˆ(1)(0) (0)k la j    

            

           
1 , 2

ˆ(1)(0) (0)n k la j   . 
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This results to the matrix     

, 2 , 2 , 1 , 2
ˆ ˆ ˆ ˆ2 2 2 0

1 2
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k l k l k l k lj kj j j

k

G k

k

    
 
 
 
 
 
 
 

         (1)

    

By removing second row and first column of Equation 1, we obtain 
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which finish our induction. 

 

We recall that 2.n   By choosing 1 3,l n    one can achieve that 
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Lastly, we contract
3n

nG 
 on column 1 to compute the matrix 
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Then finding the permanent 
2

, , 1 , 1
ˆ ˆ ˆ2 .n

n k n k n k nperG kj j j
   

 
 
 

It follows immediately from Proposition 1 that  
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, 1

ˆ .n
n n k nperG perG j

 
 

 

As an application of Theorem 1, we use is to prove an interesting property of .nG   
 

Definition 6. An n n   matrix A is convertible if there is an  1, 1   matrix K such that  

  =  ,perA det A K  

where A K  denotes the Hadamard product of A and .K  

 

Theorem 2. For any natural number n , nG  is convertible. 

Proof. Let nS  be a  1, 1 matrix of dimension n n  defined by 
 

1 1 1 1

1 1 1 1

1 1 1 1
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Then the Hadamard Product of nG  and nS is  
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We use strong induction on .n   

Base case: for 1,n    1 1 .G S k  Hence 1 1 ,det( ) k nG S k j  . 

Now assume that , 1det( )r r r rG S j   for any 1 r k  .  

 

Now consider 
 

       1 1 1, 1 1, , 1 1 1det( ) det( ) det( )k k k k k k k k k k k kG S a G S a a G S           

              , 1 ,2k k k kkj j    

              , 2k kj    

              ,( 1) 1k kj   .  

Therefore, , 1det( ) .n n k nG S j   By Theorem 1, we obtain 
 

det( ) ,n n nG S perG
 

 

which finishes the proof.      
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