A Review on Polyamines and Biotic Stresses in Plants

Md Azizul Islam, Pulak Maitra, Dipa Mandal


The biotic stresses are one of the main causes to the loss of crops, and their development, growth and productivity in the environment. Polyamines are positively charge compounds that have active potential power to DNA, RNA and protein (negative charge compounds), are exist in all living life for their low molecular weight and smallness. Naturally occurring polyamines are involved biotic stress response especially different plants disease and contribute the survival of plant in environment. They contribute a lot of different biological functions, such as controlling the cell cycle, protecting the cell, involve in gene expression, cell signaling replication, transcription, translation and membrane stabilization. This article specially highlights the recent advancement of polyamines in modern plant science research their impact of biotic stress specially the diseases caused by different microorganisms (bacteria, fungus) and creature systems.


Plants, polyamines, biotic stresses, PR proteins, MAPKs

Full Text:



Alcázar, R., Marco, F., Cuevas, J.C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A.F., Altabella, T., “Involvement of polyamines in plant response to abiotic stress”, Biotechnol Lett. vol. 28, pp. 1867–1876, 2006.

Amirsadeghi, S., Robson, C.A., Vanlerberghe, G.C., “The role of the mitochondrion in plant responses to biotic stress”, Physiol Plant. vol. 129, pp. 253–266, 2007.

Andronis, E.A., Moschou, P.N., Toumi, I., Roubelakis-Angelakis, K.A., “Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana”, Front. Plant Sci. vol. 5, PP. 132, 2014.

Asthir, B., Spoor. W., Duffus, C.M., “Involvement of polyamines, diamine oxidase and polyamine oxidase in resistance of barley to Blumeria graminis f. sp. Hordei”, Euphytica. vol. 136, pp. 307–12, 2004.

Baileya, A., Strema, D., Baea, H., Myolob, G., Guiltinan, J., “Gene expression in leaves of Theobroma cacao in response to mechanical wounding, ethylene, and/or methyl jasmonate”, Plant Sci. vol. 168, pp. 1247–58, 2005.

Bouchereau, A., Aziz, A., Larher, F., Martin-Tanguy, J., “Polyamines and environmental challenges: recent development”, Plant Sci. vol. 140, pp. 103–125, 1999.

Brieger, L., “Ueber Spaltungsprodukte der Bacterien, Zweite Mittheilung”, Zeitschr Physiol Chem. vol. 9, pp. 1–7, 1885.

Cohen, S.S., “A guide to the polyamines”, Oxford University Press, New York. 1998.

Cona, A., Rea, G., Angelini, R., Federico, R., Tavladoraki, P., “Functions of amine oxidases in plant development and defence”, Trends Plant Sci. vol. 11, pp. 80–88, 2006.

Del Duca, S., Betti, L., Trebbi, G., SeraWni-Fracassini, D., Torrigiani, P., “Transglutaminase activity changes during the hypersensitive reaction, a typical defense response of tobacco NN plants to TMV”, Physiol Plant. vol. 131, pp. 241–250, 2007.

Della Mea, M., Caparro`s-Ruiz, D., Claparols, I., SeraWni-Fracassini, D., Rigau, J., “The first plant transglutaminase”, Plant Physiol. Vol. 135, pp. 2046–2054, 2004.

El-Ghachtouli, N., Paynot, M., Matin-Tanguy, J., Dorandi, D., Gianinazzi, S., “The effect of polyamines on endomycorrhizal infection of wild-type Pisumsativum, cv Frisson (nod+myc+) and two mutants (nod+myc- and nod-myc+)”, Mycorrhiza. vol. 5, pp. 189–92, 1995.

El-Ghachtouli, N., Paynot, M., Matin-Tanguy, J., Dorandi, D., Gianinazzi, S., “Effect of polyamines and polyamine biosynthesis inhibitors on spore germination and hyphal growth of Glomus mosseae”, Mycol Res. vol. 100, pp. 597–600, 1996.

Eller, M.H., Warner, A.L., Knap, H.T., “Genomic organization and expression analyses of putrescine pathway genes in soybean”, Plant Physiol Biochem. vol. 44, pp. 49-57, 2006.

Folk, J.E., Park. M.H., Chung, S.I., Schrode, J., Lester, E.P., Cooper, H.L., “Polyamines as physiological substrates for transglutaminases”, J Biol Chem. Vol. 255, pp. 3695–3700, 1980.

Greenland, A.J., Lewis, D.H., “Amines in barley leaves infected with brown rust and their possible relevance to formation of green islands”, New Phytol. vol. 96, pp. 283–91, 1984.

Griffin, M., Casadio, R., Bergamini, C.M., “Transglutaminases: nature’s biological glues”, Biochem J. vol. 368, pp. 377–396, 2002.

Groppa, M.D., Benavides, M.P., “Polyamines and abiotic stress: recent advances”, Amino Acids. vol. 34, pp. 35–45, 2007.

Hanfrey, C., Sommer, S., Mayer, M.J., Burtin, D., Michael, A.J., “Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity”, Plant J. vol. 27, pp. 551–560, 2001.

Hanzawa, Y., Takahashi, T., Michael, A.J., Burtin, D., Long, D., Pineiro, M., Coupland, G, Komeda, Y., “ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase” EMBO J. vol. 19, pp. 4248–4256, 2000.

Igarashi, K., Kashiwagi, K., “Polyamines: mysterious modulators of cellular functions”, Biochem Biophys Res Commun. vol. 271, pp. 559–564, 2000.

Iwata, Y., Koizumi, N., “An Arabidopsis transcription factor, Atb-ZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants”, Proc Natl Acad Sci USA. vol. 102, pp. 5280–5285, 2005.

Saha, J., “Polyamines as redox homeostasis regulators during salt stress in plants”, Front Environ Sci. vol. 3, pp. 21, 2015.

Janowitz, T., Kneifel, H., Piotrowski, M., “Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants”, FEBS Lett. vol. 544, pp. 258–261, 2003.

Kamauchi, S., Nakatani, H., Nakano, C., Urade, R., “Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana”, FEBS J. vol. 272, pp. 3461–3476, 2005.

Kumar, A., Altabella, T., Taylor, M., Tiburcio, A.F., “Recent advances in polyamine research”, Trends Plant Sci. vol. 2, pp. 124–130, 1997.

Kusano, T., Yamaguchi, K., Berberich, T., Takahashi, Y., “The polyamine spermine rescues Arabidopsis from salinity and drought stresses”, Plant Signal Behav. vol. 2, pp. 250–251, 2007b.

Kytoviita, M.M., Sarjala, T., “Effects of defoliation and symbiosis on polyamine levels in pine and birch”, Mycorrhiza. vol. 7, pp. 107–11, 1997.

Liu, K., Fu, H., Bei, Q., Luan, S., “Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements”, Plant Physiol. vol. 124, pp. 1315–1326, 2000.

Malmberg, R.L., Watson, M.B., Galloway, G.L., Yu, W., “Molecular genetics analyses of plant polyamines”, Crit Rev Plant Sci. vol. 17, pp. 199–224, 1998.

Marini, F., Betti, L., Scaramagli, S., Biodi, S., Torrigiani, P., “Polyamine metabolism is upregulated in response to tobacco mosaic virus in hypersensitive, but not in susceptible, tobacco”, New Phytol. vol. 149, pp. 301–309, 2001.

Martin-Tanguy, J., Martin, C., Gallet, M., “Presence de composes aromatiques lies a la putrescine dans divers Nicotiana viruses”, Comptes Rendus des Seances de l’Academie des Sciences, Paris D276, pp. 1433–1435, 1973. (in French).

Martin-Tanguy, J., Martin, C., Gallet, M., Vernoy, R., “Sur le puissants inhibitors de multiplication du virus de la mosaique de tabae”, Comptes Rendus des Seances de l’Academie des Sciences, Paris D282, pp. 2231–2234, 1976. (in French).

Matto, A.K., Sobolev, A.P., Neelam, A., Goyal, R.K., Handa, A.K., Segre, A.L., “Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen– carbon interactions”, Plant Physiol. vol. 142, pp. 1759-1770, 2006.

Mehta, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K., Matto, A.K., “Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life”, Nat Biotechnol. vol. 20, pp. 613–618, 2002.

Mitsuya, Y., Takahashi, Y., Berberich, T., Miyazaki, A., Matsumura, H., Takahashi, H., Terauchi, R., Kusano, T., “Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus”, J Plant Physiol. vol. 166, pp. 626–43, 2009.

Mitsuya, Y., Takahashi, Y., Uehara, Y., Berberich, T., Miyazaki, A., Takahashi, H., Kusano, T., “Identification of a novel Cys2/His2-type zinc Wnger protein as a component of a spermine-signaling pathway in tobacco”, J Plant Physiol. vol. 164, pp. 785–793, 2007.

Moschou, P.N., “Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco”, Plant Cell. vol. 20, pp. 1708–1724, 2008.

Negrel, J., Vallee, J.C., Martin, C., “Ornithine decarboxylase activity and the hypersensitive reaction of tobacco to tobacco mosaic virus in Nicotiana tabacum”, Phytochemistry. vol. 23, pp. 2747- 2751, 1984.

Niemi, K., Haggman, H., Sarjala, T., “Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro”, Tree Physiol. Vol. 22, pp. 373–81, 2002.

Panicot, M., Minguet, E.G., Ferrando, A., Alcázar, R., Bla´zquez, M.A., Carbonell, J., Altabella, T., Koncz, C., Tiburcio, A.F., “A polyamine metabolon involving aminopropyl transferases complexes in Arabidopsis”, Plant Cell. vol. 14, pp. 2539–2551, 2002.

Piotrowski, M., Janowitz, T., Kneifel, H., “Plant C–N hydrolases and the identification of a plant N-carbamoylputrescine amidohydrolase involved in polyamine biosynthesis”, J Biol Chem. vol. 278, pp. 1708–1712, 2003.

Pottosin, I., Shabala, S., “Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling, Front”, Plant Sci. vol. 5, pp. 154, 2014.

Poulin, R., Pelletier, G., Pegg, A.E., “Induction ofapoptosis by excessive polyamine accumulation in ornithine decarboxylase overproducing L1210 cells”. Biochemical Journal. vol. 311, pp. 723–727, 1995.

Rhee, H.J., Kim, E.J., Lee, J.K., “Physiological polyamines: simple primordial stress molecules”, J Cell Mol Med. vol. 11, pp. 685–703, 2007.

Romero-Puertas, M.C., Perazzolli, M., Zago, E.D., Delledonne, M., “Nitric oxide signalling functions in plant–pathogen interactions” Cell Microbiol. vol. 6, pp. 795–803, 2004.

Rutkowski, D.T., Kaufman, R.J, “A trip to the ER: coping with stress”, Trends Cell Biol. vol. 14, pp. 20–28, 2004.

Sannazzaro, A.I., Echeverria, M., Alberto, E.O., Ruiz, O.A., Menendez, A.B., “Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza”, Plant Physiol Biochem. vol. 45, pp. 39–46, 2007.

Seiler, N., Raul, F., “Polyamines and apoptosis”, J Cell Mol Med. vol. 9, pp. 623–642, 2005.

Tabor, CW., Tabor, H., “Polyamines”, Annu Rev Biochem 53, pp. 749–790, 1984.

Takahashi, Y., Berberich, T., Miyazaki, A., Seo, S., Ohashi, Y., Kusano, T., “Spermine signaling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction”, Plant J. vol. 36, pp. 820–829, 2003.

Tang, W., Charles, T.M., Newton, R.J, “Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill) confers multiple stress tolerance and enhances organ growth”, Plant Mol Biol. vol. 59, pp. 603–617, 2005.

Tang, W., Newton, R.J., Li, C., Charles, T.M., “Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis”, Plant Cell Rep. vol. 26, pp. 115–124, 2007.

Thomas, T., Thomas, T.J, “Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications”, Cell Mol Life Sci. vol. 58, pp. 244–258, 2001.

Torrigiani, P., Rabiti, A.L., Bortolotti, C., Betti, L., Marani, F., Canova, A., Bagni, N., “Polyamine synthesis and accumulation in the hypersensitive response to TMV in Nicotiana tabacum”, New Phytol. vol. 135, pp. 467–473, 1997.

Tun, N.N., Santa-Catarina, C., Begum, T., Silveira, V., Handro, W., Floh, E.I., Scherer, G.F, “Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings”, Plant Cell Physiol. vol. 47, pp. 346–354, 2006.

Uehara, Y., Takahashi, Y., Berberich, T., Miyazak, A., Takahashi, H., Matsui, K., Ohme-Takagi, M., Saitoh, H., Terauchi, R., Kusano, T., “Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 typezinc Wnger motif that functions in spermine-signaling pathway”, Plant Mol Biol. vol. 59, pp. 435–448, 2005.

Urade, R., “Cellular response to unfolded proteins in the endoplasmic reticulum of plants”, FEBS J. vol. 274, pp. 1152–1171, 2007.

Urano, K., Yoshiba, Y., Nanjo, T., Ito, T., Yamaguchi-Shinozaki, K., Shinozaki, P., “Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance”, Biochem Biophys Res Comm. vol. 313, pp. 369–375, 2004.

Van Leeuwenhoek, A., “Observationes D. Anthonii Leeuwenhoek, de natis e semine genitali animalculis”, Philos Trans R Soc Lond 12, pp. 1040–1043, 1678.

Walden, R., Cordeiro, A., Tiburcio, A.F., “Polyamines: small molecules triggering pathways in growth and development”, Plant Physiol. vol. 113, pp. 1009–1013, 1997.

Walters, D.R., “Polyamines in plant–microbe interactions”, Physiol Mol Plant Pathol. vol. 57, pp. 137–46, 2000.

Walters, D.R., “Polyamines and plant diseases”, Phytochemistry. vol. 64, pp. 97-107, 2003.

Walters, D.R., “Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism”, New Phytol. vol. 159, pp. 109–115, 2003a.

Yamakawa, H., Kamada, H., Satoh, M., Ohashi, Y., “Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection”, Plant Physiol. vol. 118, pp. 1213–22, 1998.

Yamasaki, H., Cohen, M.F., “NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants”, Trends Plant Sci. vol. 11, pp. 522–524, 2006.

Yamasaki, H., Shimoji, H., Ohshiro, Y., Sakihama, Y., “Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria”, Nitric Oxide. vol. 5, pp. 261–270, 2001.

Yoda, H., Hiroi, Y., Sano, H., “Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells”, Plant Physiol. vol. 142, pp. 193–206, 2006.

Yoda, H., Yamaguchi, Y., Sano, H., “Induction of hypersensitive response by hydrogen peroxide produced through polyamine degradation in tobacco plants”, Plant Physiol. vol. 132, pp. 1973–1981, 2003.

DOI: https://doi.org/10.24203/ajas.v6i5.5491


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.