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ABSTRACT— In this paper, we introduce a new bivariate generalized Gompertz distribution, it is of Marshall-Olkin 

type. Some properties of the distribution are studied, as bivariate moment generating function, marginal moment 

generating function and conditional distribution. Parameters estimators using the maximum likelihood method are 

obtained. A numerical illustration is used to obtain maximum likelihood estimators (MLEs) and we study the behavior 

of the estimators numerically. 
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1. INTRODUCTION 

Recently EL-Gohary et al. [3] introduced a three-parameters generalized Gompertz (  ) distribution by 

exponentiating the Gompertz ( ) distribution as was done for the exponentiated Weibull distribution by Mudholkar et al. 

[5]. The exponentiation introduced an extra shape parameter in the model, which may yield more flexibility in the shape 

of the probability density function and hazard function. Several properties of their new distribution were established. 

They observed that exponential, generalized exponential and Gompertz distribution can be obtained as special cases of 

the    distribution. 

The main object of the paper is to introduce a new bivariate generalized Gompertz (   ) distribution, whose 

marginals are    distributions, it is obtained using a method similar to that used to obtain Marshall-Olkin bivariate 

exponential model Marshall and Olkin [6], Sarhan and Balakrishnan [7] and bivariate generalized exponential model of 

Kundu and Gupta [4]. The proposed distribution is constructed from three independent    distributions using a 

maximization process. Computation of the estimators involves solving a four dimensional optimization problem. The 

generation of random samples from the     is quite straight forward, which makes it very convenient to perform the 

simulation experiments. 

Several properties of the new distribution have been established, its joint probability density function and its joint 

cumulative distribution function are expressed in explicit forms. The marginals of the proposed distribution are univariate 

   distribution. The joint moment generating function (MGF) of     distribution is obtained in explicit forms. 

Suppose                         is a random sample from the new bivariate distribution, then our aim is to 

compute the MLEs of the unknown parameters by solving four nonlinear equations. Monte Carlo simulations have been 

performed to see the behavior of the MLEs, and real data analysis has been performed for illustrative purpose. 

The rest of the paper is organized as follows. In Section 2, we describe the models and discuss some different 

properties. Section 3 presents the joint moment generating function of proposed bivariate distribution. Section 4 obtains 

the parameter estimation using MLE. In section 5 we present a numerical result are obtained using real data and 

simulated data. Finally, a conclusion for the results is given in Section 6. 

2. A NEW BIVARIATE GENERALIZED GOMPERTZ DISTRIBUTION 

In this section, we briefly discuss the new     distribution. We start with the joint cumulative distribution function 

of the distribution and then derive the corresponding joint probability density function. Let X be a random variable has 

univariate    distribution with parameters         has the probability density function (PDF), cumulative distribution 

function (CDF) respectively for    ; 
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where                 are the parameters. 

2.1 The Joint Cumulative Distribution Function 

Suppose that              ,               and               and they are independently distributed. Define 

              and              .Then, the bivariate vector         has a     distribution with parameters 

            . 

We now study the joint distribution of the random variables           Sarhan and Balakrishnan [7] considered the 

following lemma of the joint CDF of the                  . 

Lemma 2.1.  The joint CDF of           is 

                
  
 
         

  

    
  
 
         

  

    
  
 
        

  

 (3) 

where              

proof:  Since 

                        
we have 

                                        

                              

As             are mutually independent, we readily obtain 

                                             

                                                                                           (4) 

Substituting from (2) into (4), we obtain (3), which completes the proof of the lemma.2.1. 

2.2  The Joint Probability Density Function 

The following theorem gives the joint PDF of the           which is the joint PDF of                  . 

Theorem 2.1. If the joint CDF of         is as in (3), the joint PDF of         is given by 

             

                         
                         
                            

  (5) 

where 

                   
    

  
 
            

  
 
         

         

 

                        
    

  
 
            

  
 
         

    

 

(6) 
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proof: Let us first assume that      . Then,             in (3) will be denoted by           and becomes 

              
  
 
         

       

    
  
 
         

  

 

Then, upon differentiating this function w.r.t.    and    we obtain the expression of           given in (6). By the 

same way we obtain           when      . But         cannot be derived in a similar way. For this reason, we use 

the following identity to derive         
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Similarly 
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From (9) and (10), we then get 

        

 

 

                
   

  
 
           

  
 
        

            
 

 

   

                                
   

  
 
           

  
 
        

            

  

 

 

 

                                
   

  
 
           

  
 
        

            
 

 

   

This is, 

            
   

  
 
           

  
 
        

            

 (11) 

This completes the proof of the theorem. 

2.3  Marginal Probability Density Functions 

The following theorem gives the marginal density function of          . 

Theorem 2.2.  The marginal probability density functions of           is given by 

                 
    

  
             

  
          

         

 

                                 

proof: The marginal cumulative distribution function of    , say      , as follows: 

                                               
and since    is independent of   , we simply have 

            
  
          

  

    
  
          

  

     
  
          

     

 

                                 
(12) 

Differenting w.r.t.    we obtain the formula given in (12). 

2.4 Conditional Probability Density Functions 

Given the marginal probability density functions of           we can now derive the conditional probability density 

functions as presented in the following theorem. 

Theorem 2.3.  The conditional probability density functions of   , given      ,                         is given by 
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proof: The proof follows immediately by substituting the joint probability density function of         given in (6), (7) 

and (8) and the marginal probability density function of           given in (12), using the relation 

              
             

       
               

3. MOMENT GENERATING FUNCTIONS 

We present the joint moment generating function of         and the marginal moment generating function of 

         . 

3.1 The Marginal Moment Generating Function 

We derive the marginal density functions of   : 

Lemma 3.1. If                 , then the moment generating function of           is given by 
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proof: Consider equation (12) with             we get 
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Since       
         for     , then by using the binomial series expansion given by 
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Substituting from (15) into (14) we get 

   
              

       
 

      
 

   

                 
 

 

   
           

using the Taylor series expansion of    
        we get 
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Substituting from the relation in (15) we get 

   
              

             

  

 

   

 

   

 
       

 
                    

 

 

    

from which we readily derive the expression of    
     given in (13). 

Note that the moment generating function    
     can be used, instead of the marginal pdf        , to derive the marginal 

expectation of    as 

         

   
   

     
    

 

From (13), we obtain 

 
 

   
   

              
             

  

 

   

 

   

 
       

 
       

 

         
 

Similarly, the second moment of    can be derived from    
     as its second derivative at     . The expression for the 

function    
     in (13) can be used to derive the rth moment of    as given below 

    
    

 

   
   

              
             

  

 

   

 

   

 
       

 
       

  

           
 

3.2 The Joint Moment Generating Function 

The joint moment generating function of         can be derived as follows: 

Theorem 2.3.  If                        , then the joint moment generating function of         is given by 
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proof: Sarhan and Balakrishnan [7] introduced the definition of the joint moment generating function of         as 

follows 
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Substituting from (6) into    we get 

                  
  

 

 

 

        
      

            
      

         
 

           
      

            
      

    
       

                          
            

      
    

 
 

 

 

               
  

 

       
            

      
         

       

Let 
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substituting from the relation in (15) into (18) we get 

      
       

 
                           

           

  

 

 

   

 (19) 

substituting from the relation in (16) into (19) we get 
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substituting from the relation in (15) into (20) we get 

              
    
 

 

 

   

                        
         

 

 

                     

using the relation in (16)    becomes as following 
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Similarly we can obtain as follows 

       
             

                   

                    

 

   

 

   

 

   

 

   

         
       

 
  
    
 

  

           
             

                   

                         

 

   

 

   

 

   

 

   

         
       

 
  
    
 

  

And we can obtain    as follows 

     
      

               

             

 

   

 

   

 
          

 
        

Then we can obtain the joint moment generating function 

                  

4. MAXIMUM LIKLIHOOD ESTIMATORS 

Kundu and Gupta [4] used the method of maximum likelihood to estimate the unknown parameters of the bivariate 

generalized exponential distribution. in the same way we use the method of maximum likelihood to estimate the 

unknown parameters of the BGG distribution and consider c=1.  

Suppose                         is a random sample from                   distribution. Consider the 

following notation 

                                                                     

The likelihood of the sample of size  given by: 
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Based on the observations, and using the density functions (6), (7) and (8) the likelihood function becomes: 

                         
  

  
     

  
               

  
        

  
               

  
    

                                      
       

       
        

       
    

  

   

 

                                        
         

  
               

  
        

  
               

  
    

                                      
       

    
        

       
       

  

   

 

                                  
      

  
              

  
            

      
          

  

   

 

The log-likelihood function can be written as 

                             
       

  

   

           

  

   

     

  

   

           

  

   

 

                                          

  

   

        
                 

  

   

        
        

                                             
       

  

   

           

  

   

     

  

   

           

  

   

 

                                       

  

   

        
                    

  

   

        
        

                                           

  

   

          

  

   

                

  

   

        
       (21) 

Computing the first partial derivatives of (21) with respect to            and , and setting the results equal zeros, we 

get the likelihood equations as in the following form 
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(25) 
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To get the MLEs of the parameters               , we have to solve the above system of four non-linear equations 

with respect to               . The solution of equations (22), (23), (24) and (25) are not easy to solve, so numerical 

technique is needed to get the MLEs. 

The approximate confidence intervals of the parameters based on the asymptotic distributions of their MLEs are 

derived. For the observed information matrix            and , we find the second partial derivatives as follows 

   

   
      

   
       

 
 

  
    

 
                  

   

      
                      

   

      
     

   
       

 
 

   

     
      

        

     
         

  

   

  
        

     
         

  

   

  
       

     
        

  

   

 

   

   
      

   
    

 
 

  
       

 
              

   

      
     

   
       

 
 

   

     
      

        

     
         

  

   

  
        

     
         

  

   

  
       

      
        

  

   

 

   

   
      

   
       

 
 

  
       

 
 

  
    

 
 

   

     
      

        

     
         

  

   

  
        

     
         

  

   

  
       

      
        

  

   

 

   

   
      

   
  

           
    

               

     
         

 

  

   

        
    

               

     
         

 

  

   

 

                        
   
  

        
    

               

     
         

 

  

   

           
    

               

     
         

 

  

   

 

                        
  
  

              
     

             

      
        

 

  

   

 

Then the observed information matrix is given by 

    

            
            
            
            

  

so the variance-covariance matrix may be approximated ad 

    

            
            
            
            

 

  

  

            
            
            
            

  

5. SIMULATION AND DATA ANALYSIS 

In this section first we present Monte Carlo simulation results to study the behavior of the MLEs and then present one 

data analysis results mainly for illustrative purpose. 

5.1 Simulation Results 

We present some simulation results to see how the MLEs behavior for different sample sizes and for different initial 

parameter values. We have used different sample sizes namely n = 20, 40, 60, 80 and 100 and two different sets of 

parameter values: Set 1:                and Set 2:                   . In each case we have computed 

the MLEs of the unknown parameters by maximizing the log-likelihood function (20), the MLEs will be obtained using 

iterative procedure using Mathcad (2001) software. We compute the average estimates and mean square error over 1000 

replications and the results are reported in Table 1. 
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Some of the points are quite clear from Table 1. In all the cases the performances of the maximum likelihood estimate 

are quite satisfactory. It is observed that as sample size increases the average estimates and the mean squared error 

decrease for all the parameters, as expected. 

Table 1 The average of MLEs and the associated mean square errors (within brackets below) 

 Set 1 Set 2 

Model 11   12   13   1  1.11   12   13   1  

n 

n=20 
1.165 1.157 1.141 1.073 1.283 1.161 1.141 1.072 

(0.318) (0.293) (0.262) (0.055) (0.374) (0.099) (0.267) (0.055) 

n=40 
1.085 1.074 1.072 1.039 1.195 1.073 1.072 1.038 

(0.126) (0.108) (0.089) (0.025) (0.146) (0.090) (0.093) (0.024) 

n=60 
1.059 1.045 1.057 1.026 1.166 1.045 1.058 1.026 

(0.071) (0.067) (0.058) (0.015) (0.084) (0.067) (0.059) (0.014) 

n=80 
1.038 1.045 1.03 1.019 1.144 1.045 1.029 1.019 

(0.055) (0.05) (0.037) (0.011) (0.063) (0.051) (0.039) (0.011) 

n=100 
1.036 1.04 1.027 1.018 1.14 1.041 1.027 1.017 

(0.038) (0.04) (0.031) (0.008) (0.045) (0.04) (0.032) (0.008) 

5.2 Data Analysis 

The following data represent the American Football (National Football League) League data and they are obtained 

from the matches played on three consecutive weekends in 1986. The data were first published in `Washington Post' and 

they are also available in Csorgo and Welsh [2]. 

It is a bivariate data set, and the variables           are as follows:    represents the `game time' to the first points 

scored by kicking the ball between goal posts, and    represents the `game time' to the first points scored by moving the 

ball into the end zone. These times are of interest to a casual spectator who wants to know how long one has to wait to 

watch a touchdown or to a spectator who is interested only at the beginning stages of a game. 

The data (scoring times in minutes and seconds) are represented in Table 2. The data set was first analyzed by Csorgo 

and Welsh [2], by converting the seconds to the decimal minutes, i.e. 2:03 has been converted to 2.05, 3:59 to 3.98 and 

so on. We also adopte the same procedure. Here also all the data points are divided by 100 just for computational 

purposes. 

The variables           have the following structure: (i)         means that the first score is a field goal, (ii)         

means the first score is a converted touchdown, (iii)         means the first score is an unconverted touchdown or safety. 

In this case the ties are exact because no `game time' elapses between a touchdown and a point-after conversion attempt. 

Therefore, here ties occur quite naturally and they can not be ignored. It should be noted that the possible scoring times 

are restricted by the duration of the game but it has been ignored similarly as in Csorgo and Welsh [2]. 

X1 X2 X1 X2 X1 X2 

2.05 3.98 5.78 25.98 10.40 10.25 

9.05 9.05 13.80 49.75 2.98 2.98 

0.85 0.85 7.25 7.25 3.88 6.43 

3.43 3.43 4.25 4.25 0.75 0.75 

7.78 7.78 1.65 1.65 11.63 17.37 

10.57 14.28 6.42 15.08 1.38 1.38 

7.05 7.05 4.22 9.48 10.53 10.53 

2.58 2.58 15.53 15.53 12.13 12.13 

7.23 9.68 2.90 2.90 14.58 14.58 

6.85 34.58 7.02 7.02 11.82 11.82 

32.45 42.35 6.42 6.42 5.52 11.27 

8.53 14.57 8.98 8.98 19.65 10.70 

31.13 49.88 10.15 10.15 17.83 17.83 

14.58 20.57 8.87 8.87 10.85 38.07 

Table 2: American Football League (N F L) data 

If we define the following random variables: 
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  = time to first field goal 

   = time to first safety or unconverted touchdown 

   = time to first converted touchdown, 

then                and               Therefore,         has a similar structure as the Marshall-Olkin 

bivariate exponential model or the proposed BGG model. 

We use this data to obtain the estimate the unknown parameters using our bivariate model. We have taken the initial 

guesses                are all equal to 1. The estimate of                become 0.043, 0.528, 1.037 and 7.877 

respectively. The corresponding log-likelihood value is 37.414 the 95% confidence intervals of                are 

(0,0.127), (0.244, 0.812), (0.627, 1.447), (5.287, 10.467) respectively. 

5.3 Conclusions 

In this paper we have proposed bivariate generalized Gompertz distribution function whose marginals are generalized 

Gompertz distributions. This new bivariate distribution has several interesting properties and it can be used as an 

alternative to the several absolute continuous bivariate distributions, like Block and Basu bivariate distribution [1]. The 

generation of random samples from proposed bivariate distribution is very simple, and therefore Monte Carlo simulation 

can be performed very easily for different statistical inference purpose. It is observed that the MLEs of the unknown 

parameters can be obtained by solving four non-linear equations and Monte Carlo simulation indicate that the 

performance of the MLEs are quite satisfactory. Analysis of one real data indicates that the performance of the 

confidence intervals based on asymptotic distribution. 
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