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ABSTRACT---- More advance, it has studied in some papers that finding of first two moments of sample extremes of 

order statistics from discrete uniform distribution. In this paper, these moments are generalized. Also, for sample 

extremes of order statistics from discrete uniform distribution, moment generating functions are obtained.  
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1. INTRODUCTION 

Suppose nXXX ,,, 21   is a random sample from a discrete distribution and let nnnn XXX ::2:1    

denote the corresponding order statistics (Arnold et.al, 1992; David and Nagaraja, 2003). 

Order statistics and their moments have assumed considerable interest in recent years. There is a vast literature on 

both theory and application of the moments of order statistics (Gokdere, 2014). The first two moments of order statistics 

from discrete distributions were proved by Khatri (1962). Arnold et al (1992) obtained the first two moments with a 

different way which were already obtained by Khatri (1962). All the developments on discrete order statistics lucidly 

accounts by Nagaraja (1992). The first two moments of sample maximum of order statistics from discrete distributions 

were obtained by Ahsanullah and Nevzorov (2001). For n up to 15, algebraic expressions for the expected values of the 

sample maximum of order statistics from discrete uniform distribution were obtained by Çalik and Güngör (2004) 

Furthermore; m th raw moments of order statistics from discrete distribution were proved by Çalik et al (2010). 

2. THE DISTRIBUTIONS OF ORDER STATISTICS 

Suppose that nXXX ,...,, 21   are random variables each with distribution function ).(xF
 

Let 

nrxF nr ,...,2,1),(:   denote the distribution function of the r th order statistics .:nrX  Then the distribution function 

of the largest order statistics },...,max{ 1: nnn XXX   is given by  

)(}{}{)( :: xFxXallPxXPxF n

innnn   

Likewise, the distribution function of the },...,min{ 1:1 nn XXX   is  

n

inn xFxXallPxXPxF )](1[1}{1}{)( :1:1   

The marginal distribution function )(: xF nr  of r th order statistics nrX nr 1,:  
is given  
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From the relation between binomial series and incomplete beta function, )(: xF nr  can be written as  
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)1,()( )(:  rnrIxF xFnr
 

where 
 

x
ba

x dtttbaBbaI
0

111 )1()),((),(  and 

  

1

0

11 )(/)()()1(),( babadtttbaB ba
 (David, 1981). 

For discrete population, the probability mass function of )1(: nrX nr   may be obtained from (2.2) by differencing 

as 

)()(}{)( ::::  xFxFxXPxf nrnrnrnr   
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where 
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In particular, we also have  
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3. ORDER STATISTICS FROM DISCRETE DISTRIBUTIONS 

Since distributions of order statistics are more complex in discrete case, it is not easy to find their moments. Some 

specific approaches have been put forward for calculating these moments. Moments of order statistics of some discrete 

distributions can be calculated by using these approaches. 

Approach- 1 (Binomial Sum). In the discrete case, which yields an expression for )(: xF nr  for each possible value x 

of
 nrX :  

)()()( :::  xFxFxf nrnrnr                                           
(3.1)

 

Consequently, 
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    Approach- 2 (Beta Integral Form). It makes use of the form of )(: xF nr  
given in (2.2) and (3.1), 
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4. MOMENTS OF ORDER STATISTICS FROM DISCRETE UNIFORM DISTRIBUTION 

Let nXXX ,...,, 21  be independent and identically distributed uniform random variables from discrete 

population with pmf 
k

xf
1

)(  , cdf 
k

x
xF )( , .,...,1 kx   Then, from (3.3), pmf  of nrX :  can be written  
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In particularly, we also have 
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Theorem 1: 

  Let nXXX ,...,, 21  be random variables from a discrete uniform distributions and nX :1  be 1th order statistics 

corresponding to these random variables. Then, m th moment of nX :1 , 

whenever  the moment on the left- hand side is assumed to exist,  
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Proof. If expression in (4.1) of )(:1 xf n  
is written in definition of moment, m th moment of nX :1 , 
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If the sum on the right- hand side is opened and simplification is made, 
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Therefore, the proof is complete. 

In particular, if 1m and 2m  are taken, respectively, 
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 (Ahsanullah and Nevzorov, 2001). 

Theorem 2.  

Let nXXX ,...,, 21  be random variables from a discrete uniform distributions and nnX :  be nth order statistics 

corresponding to these random variables. Then, m th moment of nnX : , whenever  the moment on the left- hand side is 

assumed to exist,  
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Proof.  Omitted. 

In particular, if 1m and 2m  are taken, respectively, 
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(Turan, 2008).  

Theorem 3.  

Let nXXX ,...,, 21  be random variables from a discrete uniform distributions and nX :1  be 1th order statistics 

corresponding to these random variables. Then, moment generating function of nX :1 , 
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Proof. If expression in (4.1) of )(:1 xf n  
is written in definition of moment generating function, m th moment of nX :1 , 
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are obtained. Therefore, the proof is complete. 

Theorem 4.  

Let )()(

:1 tM s

n
show s th derivative moment generating function of minimum order statistics from discrete 

uniform distribution. Then, 
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Proof. If sequential derivatives of )(:1 tM n  are taken, in Theorem 3, the proof is completed. 

Theorem 5.  

Let nXXX ,...,, 21  be random variables from a discrete uniform distributions and nnX :  be nth order statistics 

corresponding to these random variables. Then, moment generating function of nnX : , 
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Proof.  Omitted. 

Theorem 6. 

Let )()(

: tM s

nn show s th derivative moment generating function of maximum order statistics from discrete 

uniform distribution. Then, 
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Proof. Omitted. 

5. RESULTS AND DISCUSSION 

Because statistical theory can be easily developed for uniform distribution, make statistical inference about 

parameters of uniform distribution is important in terms of statistical theory.  

Moments of order statistics are great importance in many statistical problems. The information obtained about the means, 

variances and covariances of moment of order statistics enables the evaluation of the expected values and variances of 

the linear functions of order statistics. 

Obtained algebraic and numerical results for expected values and variances order statistics are applicated in 

others department. For example; in a study entitled “Natural selection and veridical perceptions”, Mark et al. (2010) used 

the expected values of the sample maximum of order statistics from discrete uniform distributions. 
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