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________________________________________________________________________________________________ 

ABSTRACT-The differential equation governing the transverse motion of elastic rectangular plate of non-

linear thickness variation with thermal gradient has been analyzed on the basis of classical plate theory. 

Following Levy approach i.e. the two parallel edges are simply supported, the fourth-order differential 

equation governing the motion of such plates of non-linear varying thickness in one direction with 

exponentially temperature distribution, has been solved by using the quintic splines interpolation technique for 

two different combinations of clamped and simply supported boundary conditions at the other two edges. An 

algorithm for computing the solution of this differential equation is presented, for the case of equal intervals. 

Effect of the thermal gradient together with taper constants on the natural frequencies of vibration is 

illustrated for the first three modes of vibration. 

Keywords- Exponentially temperature, non-linear, thickness variation, vibration, rectangular plate. 

________________________________________________________________________________________________ 

 

1. INTRODUCTION 

In this era of science and technology plates of various shapes and of variable thickness may be regarded as a first 

approximation to wings and blades and occur as panels in many forms of engineering structures. Thus knowledge of their 

natural frequencies is of considerable importance at the design stage in order to avoid resonance excited by internal or 

external forces. Therefore, their design requires an accurate determination of their natural frequencies and mode shapes. 

With the advancement of technology, plates of variable thickness are being extensively used in civil, electronic, 

mechanical, aerospace and marine engineering applications. It becomes very necessary, now a day, to study the vibration 

behavior of plates to avoid resonance excited by internal or external forces. Modern engineering structures are based on 

different types of design, which involve various types of anisotropic and non-homogeneous materials in the form of their 

structure components. Depending upon the requirement, durability and reliability, materials are being developed so that they 

can be used to give better strength and efficiency. In the recent past, there has been a phenomenal increase in the 

development of elastic materials due to the desirability of lightweight, high strength, corrosion resistance and high-

temperature performance requirements in modern technology. Plates of composite materials are widely used in many 

engineering structures and machines.  

A number of researchers have worked on free vibration analysis of plates of different shapes and variable thickness. 

Rectangular plates of non-linear varying thickness are widely used in various structures; however, they have been poorly 

studied, unlike linearly varying thickness. Rectangular plates of non-linear varying thickness with thermal gradient find 

various applications in the construction of modern high speed air craft. The vibration characteristics of such plates are of 

interest to the designer.  

An extensive review of the work up to 1985 on linear vibration of isotropic/anisotropic plates of various geometries has 

been given by Leissa in his monograph [1]. The studied on vibration of rectangular plates with uniform/non-uniform 



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 01– Issue 01, April 2013 

Asian Online Journals (www.ajouronline.com)  9 

 

thickness with various edge conditions after 1985 has been carried out by a number of researchers and are reported in refs.[2-

5].  

Here, a quintic splines procedure is developed for obtaining the natural frequencies of rectangular plate of nonlinear 

varying thickness with thermal gradient effect. The consideration of present type of thickness variation was taken earlier by 

Gupta et al. [6] for circular plate. The plate type structural components in aircraft and rockets have to operate under elevated 

temperatures which cause non-homogeneity in the plate material i.e. elastic constants of the material become functions of the 

space variables. In an up-to-date survey of literature, authors have come across various models to account for non-

homogeneity of plate material proposed by researchers dealing with vibration. 

Gupta et al. [7] studied the thermal gradient effect on vibration of a non-homogeneous orthotropic rectangular plate 

having bi-direction linearly thickness variation. Gupta et al. [8] did the vibration analysis of visco-elastic orthotropic 

parallelogram plate with linearly thickness variation in both directions. Lal et al. [9] studied the transverse vibrations of non-

uniform orthotropic rectangular plates by Quintic splines method. Gupta and Kaur [10] studied the effect of thermal gradient 

on free vibration of clamped visco-elastic rectangular plates with linearly thickness variation in both directions. Gupta and 

Khanna [11] studied the vibration of visco-elastic rectangular plate with linearly thickness variations in both directions. 

Gupta et al. [12] observed the thermal effect on vibration of non-homogeneous orthotropic rectangular plate having bi-

directional parabolically varying thickness. Tomar and Gupta [13, 14] studied the effect of thermal gradient on frequencies of 

orthotropic rectangular plate of variable thickness in one and two direction. Gupta et al. [15, 16] studied the thermal effect on 

vibration of parallelogram plate of linearly varying thickness and bi-directional linearly varying thickness. Gupta et al. [17] 

did the vibration study of visco-elastic parallelogram plate of linearly varying thickness. 

As linear thickness variation is not perfect linear thought and same for quadratic, therefore non-linear variation in 

thickness is very useful for scientist and engineer for studying the vibration of plate before to finalize the modes of 

vibrations. 

Since no work available on non-linear thickness variation on thermally induced vibration of rectangular plate, so in this 

paper the thermal effect on vibration of rectangular plate of non-linear varying thickness is studied. Here, vibration of a 

rectangular plate of non-linear varying thickness under a steady exponentially temperature distribution have been studied. 

The effect of temperature on modulus of elasticity is assumed to vary exponentially along x-axis. The non-linear thickness 

variation is taken as combination of linear and parabolically variation factor. The differential equation of motion has been 

solved by quintic spline interpolation technique. The two edges parallel to x-axis (y=0 and y=b) are assumed to be simply 

supported. Different set of boundary conditions have been imposed at the other two edges. The frequency parameters for the 

first three modes of vibrations for C-S-C-S- and S-S-S-S- boundary conditions and for various values of taper constants, 

thermal constant and fixed value of length to breadth ratio, are obtained. Results are presented in tabular form.  

2. ANALYSIS AND EQUATION OF MOTION 

Let us consider a rectangular plate which is subjected to an exponential temperature distribution along the length i.e. in x-

directions: 

T=T0 (e-eX)/ (e-1)                                                                                  (1) 

Here T denotes the temperature excess above the reference temperature at any point at distance 

 X= 
a

x
 and T0 denotes the temperature excess above reference temperature at the end i.e. x=a or X=1. 

The temperature dependence of the modulus of elasticity for most of engineering materials is given by [18] 

 γT-1)( 0ETE                    (2) 

where E0 is the value of the Young's modulus at reference temperature i.e. T=0 and γ  is the slope of the variation of E with 

T.  

Taking as the reference temperature, the temperature at the end of plate i.e. at X=1, the modulus variation in view of (1) and 

(2), becomes 

 E(X)=E0 [1- α (e-eX)/ (e-1)]                                     (3) 

where α =  0T   ( 1α0  ), a constant known as temperature constant. 

The differential equation governing the free transverse motion of an elastic rectangular plate of length a, breadth b, thickness 

h and density ρ is: 

 



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 01– Issue 01, April 2013 

Asian Online Journals (www.ajouronline.com)  10 

 

    w+ 2
  

  

 

  
   w+ 2

  

  

 

  
   w +       w+ (ν-1){

   

   

   

    -2 
   

    

   

    
 +

   

   

   

   } +ρh
   

    =0.     (4) 

where w is transverse displacement. 

Assuming that the two opposite edges of the plate y=0 and y=b are simply supported. Further, let thickness varies non-

linearly in x-direction only. Thus, the thickness h and flexural rigidity D of the plate become a function of x only. For 

harmonic vibration, w can be expressed as   

w(x,y,t)= W1(x) sin(mπy/b)eipt                                                       (5) 

where p is the circular frequency and m is a positive integer. 

Substitution of equation (5) in (4) gives 

D W1,xxxx +2D,xW1,xxx +[-2(m2π2/b2)D +D,xx]W1,xx +[-2(m2π2/b2)D,x]W1.x +[(m4π4/b4)D -ν(m2π2/b2)D,xx]W1 =ρhp2W1   

                                                                                                                                                                                   (6) 

A comma followed by a suffix denotes partial differentiation with respect to that variable. 

Thus equation (6) reduces to a form independent of y and on introducing the non-dimensional variables 

H=h/a, W=W1/a, X=x/a, D1=D/a3                                               (7) 

the differential equation (6) reduces to  

D1 W,XXXX +2D1,XW,XXX +[D1,XX -2r2D1]W,XX -2r2D1,XW,X +r2[r2 D1 -νD1,XX]W =ρHa2p2W     (8) 

where  r2 =(mπa/b)2 . 

Since thickness varies non-linearly in x-direction only, therefore, one can assume 

H=H0(1+β1X+β2X
2)                                                       (9) 

where β1 and β2 are taper constants such that  |β1 |≤1 ,  |β2 |≤1 and β1+β2>-1, H0 is thickness at X=0. 

Considering equation (3) and (9) with help of (7), the expression for rigidities D1 comes out as  

D1 = D0  [1- α(e-eX)/ (e-1)] (1+β1X+β2X
2)3                          (10) 

where D0 = E0H0
3/12(1-ν2)  

Using equations (8) to (10), one obtains the equation of motion as: 

[1-α(e-eX)/(e-1)](1+β1X+β2X
2)2W,XXXX+2[αeX/(e-1)(1+β1X+β2X

2)2+3(1-α(e-eX)/(e-1)) 

(1+β1X+β2X
2)(β1+2β2X)]W,XXX+[αeX/(e-1)(1+β1X+β2X

2)2+6 αeX/(e-1) (1+β1X+β2X
2)( β1+2β2X)  

+6(1-α(e-eX)/(e-1))(β1+2β2X)2+6(1-α(e-eX)/(e-1))(1+β1X+β2X
2)β2-2r2(1-α(e-eX)/(e-1))               (1+β1X+β2X

2)2]W,XX-

2r2[αeX/(e-1)(1+β1X+β2X
2)2+3(1-α(e-eX)/ 

(e-1))(1+β1X+β2X
2)(β1+2β2X)]W,X+r2[r2(1-α(e-eX)/(e-1))(1+β1X+β2X

2)2-ν(αeX/ 

(e-1)(1+β1X+β2X
2)2+6αeX/(e-1)(1+β1X+β2X

2)(β1+2β2X)+6(1-α(e-eX)/(e-1))(β1+2β2X)2+ 

+6(1-α(e-eX)/(e-1)(1+β1X+β2X
2)β2)]W =λ2W                            (11) 

where  

λ2 =(p2a2/(E0/ρ))(12(1-ν2)/H0
2)                                                                (12) 

is a frequency parameter. 

3. METHOD OF SOLUTION 
Let f(X) be a function with continuous derivatives in the range (0,l). Choose (n + 1) points X0, X1, X2, . .., Xn ,in the range 

O≤X≤l such that O=X0<X1<X2<X3,...,<Xn=1. 

 Let the approximating function W(X) for f(X) be a quintic spline with the following 

properties : 

(a) W(X) is a quintic polynomial in each interval (Xk, Xk+1), 

(b) W(Xk) =f(Xk), k = 0 (1) n, 

(c) W’(X), W”(X), W’’’(X) and Wiv(X) are continuous. 

From the definition, a quintic spline takes the form 

           
 
         

     
   
          

   
                                (13) 

where 

       =             

         
                                                       (14) 

It is also assumed, for simplicity, that the knots Xi are equally spaced in (0,l) with the 

spacing interval ΔX, so that 

ΔX = l/n, 

Xi = iΔX (i=O, 1, 2, . . ., n).                                                     (15) 

The number of unknown constants in equation (13) is (n + 5). Satisfaction of differential equation (11) by collocation at the 

(n + 1) knots in the interval (0,l) together with the boundary conditions (to be explained in the next section) gives precisely 

the requisite number of equations for the determination of unknown constants. 

Substituting W(X) from equation (13) into equation (11) gives, for satisfaction at the mth knot, one obtains 
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where  

 B0=[1-α(e-    )/(e-1)] (1+β1Xq+β2Xq
2)2, 

B1=2[(α     /(e-1))(1+β1Xq+β2Xq
2)2+ 3(1-α(e-   )/(e-1))(1+β1Xq+β2Xq

2)(β1+2β2Xq)], 

B2=[(α   /(e-1))(1+β1Xq+β2Xq
2)2+6 (α      /(e-1))(1+β1Xq+β2Xq

2)(β1+2β2Xq)+6(1-α(e-   )/(e-1))  (β1+2β2Xq)
2 +6(1-α(e-

   )/(e-1))(1+β1Xq+β2Xq
2)β2)  -2r2 (1-α(e-   )/(e-1)) (1+β1Xq+β2Xq

2)2], 

B3 = -2r2[(α     /(e-1))(1+β1Xq+β2Xq
2)2+ 3(1-α(e-   )/(e-1))(1+β1Xq+β2Xq 

2)(β1+2β2Xq)], 

B4= r2[r2(1-α(e-   )/(e-1))(1+β1Xq+β2Xq
2)2-ν((α     /(e-1))(1+β1Xq+β2Xq

2)2 +6 (α     /(e-1) )  

 (1+β1Xq+β2Xq
2)(β1+2β2Xq)+6 (1-α(e-   )/(e-1))(β1+2β2Xq)

2  

+6(1-α(e-   )/(e-1))(1+β1Xq+β2Xq
2)β2)]-λ

2. 

Thus, one obtains a homogeneous set of equations in terms of unknown constants a0,a1,a2,a3,a4,b0,b1,……..,bn-1, which, when 

written in matrix notation, takes the form 

[B][C]=0                                                             (17) 

where [B] is an (n+1)x(n+5) matrix and [C] is an (n+5)x1 matrix. 

 

4. BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS 
The frequency equations for clamped (C) and simply supported (S) rectangular plates have been obtained by employing the 

appropriate boundary conditions: 

C-S-C-S- Plates 

For a rectangular plate clamped at both the edges X=0 and X=1 (and simply supported at the remaining two edges), 

W|X=0,1  = (∂W/∂X) |X=0,1 =0                    (18) 

Applying the boundary conditions (18), to the deflection function (13), at the two edges X=0 and X=1, one obtains a set of 

four homogeneous equations in terms of unknown constants, which can be written as 

[A1][C]=0                                                      (19) 

where [A1] is an 4x(n+5) matrix and [C] is an (n+5)x1 matrix. 

Equation (19), taken together with the equation (17), gives a complete set of (n+5) equations for a C-S-C-S- plate. These can 

be written as  

[B/A1][C]=0                                                       (20) 

For a non-trivial solution of equation (20), the characteristic determinant must vanish: 

                 |B/A1 | =0                                        (21) 

This is the frequency equation for a C-S-C-S- plate.             

   S-S-S-S- Plates 

For a rectangular plate simply supported at both the edges X=0 and X=1 (and simply supported at the remaining two edges), 

W|X=0,1  = (∂2W/∂X2) |X=0,1 =0                    (22) 

Employing the boundary conditions (22), to the deflection function (13), at the two edges X=0 and X=1, one gets the 

boundary equations for S-S-S-S- plate as  

[A2][C]=0                                                      (23) 

where [A2] is an 4x(n+5) matrix and [C] is an (n+5)x1 matrix. 

Hence frequency equation comes out for S-S-S-S- plate as  

                 |B/A2 | =0                                        (24) 

 

 

 

5. RESULTS AND DISCUSSION 
  Frequency equations (21) and (24) are transcendental equations in λ2 from which infinitely many roots can be obtained. 

The frequency parameter λ corresponding to first three modes of vibration of C-S-C-S- and S-S-S-S- rectangular plates have 

been computed for m=1 and various values of aspect ratio (a/b), thermal constant (α) and taper constants (β1, β2). The value 

of Poisson ratio   has been taken as 0.3. 

To choose the appropriate interpolation interval ΔX, the computer programme has been developed for the evaluation of 

the frequency parameter λ and run for n=10(5)60.The numerical values show a consistent improvement with the increase of 

the number of knots. In al the above computation, authors have fixed n=50, since further increase in n does not improve the 
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results except in the fifth or sixth decimal places. These results have been tabulated in tables 1 to 3 and have been explained. 

Table 1 shows the variation of frequency parameter (λ) with thermal constant (α) for different combinations of taper 

constant (β1, β2) and fixed aspect ratio (a/b = 1.5) corresponding the first three modes of vibration for C-S-C-S- and S-S-S-S- 

plates.  The value of frequency parameter decrease with the increase of thermal constant for both the boundary conditions, 

considered here. Further, it can be seen from table that frequency parameter , for both the boundary conditions, decreases 

gradually in the third mode of vibrations in comparison to first two modes of vibration. 

The results presented in table 2 show a marked effect of variation of taper constant (β1) on the frequency parameter for 

taper constant ( β2=0.5) , two values of thermal constant (α=0.0, 0.4) and fixed aspect ratio (a/b = 1.5) corresponding to the 

first three modes of vibration. It is observed that the frequency parameter increases with the increase of taper constant for 

both the boundary conditions, considered here. 

In table 3, the effect of taper constant (β2) on frequency parameter for taper constant (β1=0.5), two values of thermal 

constant (α=0.0, 0.4) and fixed aspect ratio (a/b = 1.5) corresponding to the first three modes of vibration for C-S-C-S- and S-

S-S-S- plates, have been shown. From this table, one can observe that frequency parameter in first three modes of vibration 

increases with the increase of taper constant for C-S-C-S- and S-S-S-S- plates. 

Further, it can be seen from tables 2 and 3 that frequency parameter , for both the boundary conditions, increases 

gradually in the third mode of vibrations in comparison to first two modes of vibration. 

Also, one can observe from tables 1 to 3, that frequency parameter of C-S-C-S- plate is higher than that of S-S-S-S- plate. 

 

Table 1: Value of frequency parameter (λ) for different values of thermal constant (α) with different combinations of taper 

constant (β1, β2) and fixed aspect ratio (a/b = 1.5) for C-S-C-S- and S-S-S-S- plate for first three modes of vibrations 

β1, β2     α            C-S-C-S- PLATE                   S-S-S-S- PLATE                 

FIRST MODE SECOND MODE THIRD MODE FIRST MODE SECOND MODE THIRD MODE 

β1= -0.5, 

 β2= -0.5 

0.0 29.3011 63.0984 111.0257 21.4941 53.0078 91.1043 

0.1 28.3908 61.1005 107.6504 20.4906 50.7688 87.9017 

0.2 27.4901 58.8310 102.9045 19.4041 48.4050 84.8101 

0.3 26.4212 56.8112 99.4052 18.3100 46.1205 81.7032 

0.4 25.3101 54.7283 95.3142 17.1794 43.9503 78.6021 

0.5 24.2465 52.4450 91.1528 15.8906 41.9390 75.2167 

β1= -0.5, 

β2= 0.5 

0.0 36.0132 72.5490 127.4781 27.3761 63.7524 108.1562 

0.1 35.1001 70.2441 122.8791 26.2001 61.1533 104.7054 

0.2 34.0002 68.1961 118.7376 25.3550 58.9641 101.1645 

0.3 32.9982 66.0348 114.7082 24.2611 56.8300 97.9410 

0.4 31.8908 63.8503 110.5314 23.1530 54.6306 94.7502 

0.5 30.7983 61.7406 106.5164 22.0029 52.3858 91.4213 

β1= 0.5, 

β2= 0.5 

0.0 49.4210 106.8851 191.4330 39.7562 97.2203 171.4612 

0.1 48.4301 104.4254 187.3517 38.5401 94.8203 169.7908 
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0.2 47.4209 102.1481 184.3200 37.5304 92.8103 164.7800 

0.3 46.3211 99.8605 181.0769 36.5041 90.6234 161.5073 

0.4 45.1899 97.6103 177.0027 35.4801 88.5328 158.4087 

0.5 44.0277 95.6025 172.6536 34.4327 86.3658 155.1998 

  

Table 2: Value of frequency parameter (λ) for different values of taper constant (β1) with different combinations of thermal 

constant ( α) and fixed aspect ratio (a/b = 1.5) for C-S-C-S- and S-S-S-S- plate for first three modes of vibrations  

    β2=0.5 

α     β1            C-S-C-S- PLATE                   S-S-S-S- PLATE                 

FIRST 

MODE 

SECOND 

MODE 

THIRD 

MODE 

FIRST 

MODE 

SECOND 

MODE 

THIRD 

MODE 

                

0.0 

-0.5 36.0132 72.5490 127.4781 27.3761 63.7524 108.1562 

-0.3 38.3782 78.1352 137.9481 29.4861 69.2189 118.7010 

-0.1 40.5601 83.7103 148.5275 31.5908 74.7902 129.0211 

  0.0 42.5324 89.0914 158.7945 33.3920 79.8053 138.8386 

  0.1 44.8210 94.5601 169.4642 35.3904 85.2100 149.0842 

  0.3 47.0572 100.4805 180.3443 37.3026 91.0409 160.0490 

  0.5 49.4210 106.8851 191.4330 39.7562 97.2203 171.4612 

 

0.4 

-0.5 31.8908 63.8503 110.5314 23.1530 54.6306 94.7502 

-0.3 34.1304 69.5461 122.0372 25.4328 60.4220 105.6032 

-0.1 36.3308 75.3196 133.0619 27.5038 65.6027 116.1181 

  0.0 38.1510 80.1950 143.6991 29.1401 70.7212 125.8526 

  0.1 40.4302 86.1491 156.8407 31.1999 76.1082 136.4291 

  0.3 42.8410 91.9428 165.8413 33.2632 82.2734 147.4841 

  0.5 45.1899 97.6103 177.0027 35.4801 88.5328 158.4087 
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Table 3: Value of frequency parameter (λ) for different values of taper constant (β2) with different combinations of thermal 

constant ( α) and fixed aspect ratio (a/b = 1.5) for C-S-C-S- and S-S-S-S- plate for first three modes of vibrations  

    β1=0.5 

α     β2            C-S-C-S- PLATE                   S-S-S-S- PLATE                 

FIRST 

MODE 

SECOND 

MODE 

THIRD 

MODE 

FIRST 

MODE 

SECOND 

MODE 

THIRD 

MODE 

                

0.0 

-0.5 37.5320 77.7213 142.9941 27.8301 65.7224 116.9956 

-0.3 39.4712 82.2052 151.0998 29.7861 70.8189 126.0010 

-0.1 41.4011 86.9910 159.2275 31.7408 75.9702 135.1221 

  0.0 43.1534 91.1293 167.0042 33.4221 80.7053 143.6186 

  0.1 45.1210 96.0601 175.1864 35.3090 86.0030 152.7484 

  0.3 47.1572 101.2805 183.2443 37.3026 91.3409 162.0060 

  0.5 49.4210 106.8851 191.4330 39.7562 97.2203 171.4612 

 

0.4 

-0.5 33.2720 76.0091 126.9418 23.6881 60.1602 105.0480 

-0.3 35.1142 79.7146 135.5856 25.6627 64.9400 114.0071 

-0.1 37.2008 83.5046 143.9999 27.7293 69.7901 122.9085 

  0.0 38.8180 86.8696 152.1187 29.4711 74.2420 131.2102 

  0.1 40.8802 90.5247 160.9991 31.4209 78.9999 140.3121 

  0.3 43.1101 94.3131 169.1411 33.4382 83.6312 149.3722 

  0.5 45.1899 97.6103 177.0027 35.4801 88.5328 158.4087 
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