
Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 04 – Issue 05, October 2016 

 

Asian Online Journals (www.ajouronline.com)  1121 

Optimizing Ethanol Production in a Microbial Fermentation Model 

Using an On-Off Feeding Strategy 

Kasbawati
1
, A.Y. Gunawan

2,*
 , K. A. Sidarto

2
, and R. Hertadi

3 

 
1Department of Mathematics, Faculty of Mathematics & Natural Sciences 

Jl. Perintis Kemerdekaan Km. 10 Tamalanrea, (Makassar, Indonesia) 

 
2Industrial & Financial Mathematics Research Group 

Jl. Ganesha No. 10, (Bandung, Indonesia) 

 
3Biochemistry Research Division 

Jl. Ganesha No. 10, (Bandung, Indonesia) 

rhertadi@chem.itb.ac.id 

 
*
Corresponding author’s email: aygunawan [AT] math.itb.ac.id 

 

_________________________________________________________________________________ 

ABSTRACT— In a fermentation process, the amount and appropriate timing of feeding nutrient are very essential 

parameters for achieving efficiency and productivity. In this study, we propose an on-off  strategy of feeding glucose 

for the yeast cell and apply an optimal control theory to find an optimal feeding rate and feeding time to produce a 

high ethanol production. Using a gradient-based method we solve an optimization problem subjected to a state system 

constrain and an inequality stability constrain. We find the following feeding strategies: for feeding with shorter delay 

requires lower glucose supply whereas for longer one it requires higher supply. 

 

Keywords— fermentation system, optimal control, hybrid gradient-based numerical method 
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1. INTRODUCTION 

Production of biofuel for industrial purposes has currently been the subject of much attention in biotechnology 

industry. Ethanol is one of biotechnology products which is used primarily as an alternative source to petroleum-based 

fuels [1]. It is obtained by anaerobic fermentation of sugar-based feedstock as the raw materials by an appropriate 

microorganism [2, 3]. In recent year, research on improving ethanol production has become a challenge especially to 

identify the bottlenecks that limit industrial processes and to develop attractive high ethanol performance processes. 

Since the cost-eff ective production of ethanol becomes the main goal in identifying the bottlenecks, an eff ective 

cultivation method should be developed to generate reactions with high productivity and yield [4]. 

Many mathematical models have been developed to describe fermentation processes. They consist of unstructured 

models and structured models which qualitatively incorporate some basic mechanisms of cellular behavior [1, 5, 6]. 

These models are developed mainly for describing the qualitative behavior of the metabolic system as well as to support 

an optimal fermentation design. 

In the fermentation system, feeding strategy of the raw material is one of the main features since it directly aff ects the 

effciency of ethanol production. Substrate-feeding to the growth medium becomes an external control which has an 

important role in the system. At a low substrate concentration, degradation of glucose is oxidative which leads to lower 

ethanol production. On the other hand, overfeeding of glucose accelerateS the production of ethanol that simultaneously 

affects the growth of the yeast cell. This phenomenon is called overflow metabolism [7, 8]. This is a consequence of a 

saturated oxidative capacity on the level of pyruvate. This metabolic behavior indicates that diff erent substrate-feeding 

strategies generate diff erent rate of product formation. Therefore an efficient method of feeding nutrients and appropriate 

time of feeding are very essential parameters for achieving high productivity in the fermentation process. Based on these 

facts we consider a kinetic model of fermentation reaction to identify an optimal feeding strategy to obtain high ethanol 

productivity. Since we focus to model the kinetic reaction of a single yeast cell metabolic system, growth inhibition of 

the cell is not taken into consideration. The kinetic model is derived based on the stoichiometry of biochemical reactions 

in the central metabolism pathway of a single yeast cell providing the basis of structured modeling. In the previous study 

(see [9]), we have modeled the feeding process as a continuous process. In the present study we extend our investigation 

by considering the feeding process as an on-off process, i.e. a combination between zero and non-zero (continuous) 
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supply. We apply optimal control theory to the fermentation system and use the feeding rate of glucose and the switching 

instant time between zero and non-zero supply as the control parameters. We use total of ethanol concentrations as the 

objective in the optimization procedure for this new regulation supply. The main goal of this study is to generate a 

mathematical model that can adjust and predict the optimal feeding regulation for the yeast cell in producing high ethanol 

concentration. 

We organize the paper as follows. In Section 2, we present the formulation of the kinetic model of fermentation 

process of a yeast cell. In Section 3, we formulate the optimization problem. In Section 4, we present the computational 

procedures and numerical simulation results. A summary and some concluding remarks are presented in Section 5. 

2. PROBLEM FORMULATION 

In this study, a microbial fermentation model of a yeast cell is derived based on the similar assumptions to [9]. A 

schematic diagram of the central metabolism of the yeast cell is shown in Figure 1. This work follows along the lines of 

Lei et al. [6], but now for a different metabolic pathway. Fermentation process considered here is assumed a chemical 

process under ideal fermentation conditions. All chemical conversion processes are catalyzed by different enzymes, and 

their kinetic equations show the dynamic of single-substrate reactions with irreversible and reversible mechanisms [6, 10, 

11]. The kinetic models follow the irreversible and reversible Michaelis-Menten kinetic equations (see [9] for detail 

about the kinetic equations).  

Reaction ri is catalyzed by the following enzyme (Figure 1): 1. pyruvate kinase, 2. pyruvate carboxylase, 3. pyruvate 

dehydrogenase complex, 4. pyruvate decarboxylase, 5. alcohol dehydrogenase, 6. acetaldehyde dehydrogenase, 7. acetyl-

CoA synthetase, while r8 refers to the rate of glucose supply and r9, ··· r12 refer to the product outflows. TCA is the 

tricarboxylic acid cycle, a key part of aerobic respiration in the yeast cell. The single and the double arrows indicate 

irreversible and reversible reactions, respectively 

 

Figure 1: Schematic representation of the central metabolism of S. cerevisiae. 

Glucose, as the nutrient of the yeast cell; is metabolized via a lumped glycolysis pathway. This process leads to the 

formation of pyruvate (S2) from phosphoenolpyruvate (S1), which is the last intermediate metabolite in the glycolysis 

pathway. In the previous model (see [9]), we considered a fermentation process with a continuous culture process where 

the glucose supply was modeled as a continuous constant process r8(t) = G. In the present study, we extend our 

investigation by considering an on-off  feeding rate for the yeast cell. We introduce the feeding function r8(t) = u(t) given 

by u(t)=GHτ(t) defined over 0 ≤ t ≤ tf where τ is the switching instant time between zero supply and non-zero supply, tf is 

the final time of fermentation reaction, and Hτ (t) is the following Heaviside function 

 
0, if 0 t ,

(t)
1, if t .f

H
t





 
 

 

 (1) 

Therefore, the glucose supply G and the switching instant time τ become the control parameters in optimizing the 

production of ethanol. Furthermore, in our pathway, we have two metabolite products which are leading to TCA cycle 

for energy production, and the other products become the extracellular yeast’s wastes including ethanol. For the outflow 

product of the system, it follows the first-order kinetic, ri(t)= δkSj(t), i = 9, ··· , 12, j =3, 4, 6, 7 with constant δk, k =1,···,4. 

Under the above assumptions, the mass balances of all metabolites can be formulated as 
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with initial conditions Si(t)= Si0 (a positive constant) for i =1, ··· , 7. Using 
ft t t  and 

0i i iS S s  then we have the 

dimensionless metabolic system, 

1 1
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with dimensionless initial conditions s1(0) = 1, si(0) = si 0 for i > 1, and dimensionless kinetic parameters, vi = tf Vi/S10, kj 

= Kj/S10, k5f = S10/K5f , k5b = S10/K5b, σk = tf δk, for i, j = 1,···, 7 (j = 5), k = 1,···, 4. For the on-off  glucose supply function 

u(t), in dimensionless term it becomes 

 ),
~

(
~

)
~

(~
~ tHGtu    (4) 

where 

 
0, if 0 t ,

( )
1, if  t 1,

H t




 
 

 

  (5)                                 

with 
ft/~    and 0/ .

1
G t G Sf  In practice, we restrict ourselves to consider a non-zero upper bound of dimensionless of 

glucose supply .
~

uG Then in dimensionless term, we define the admissible domain for the feeding rate of glucose and the 

switching instant time as follows: 

  .1~0,
~~

0|)~,
~

( 2   uGGGD  (6)             

3. OPTIMAL CONTROL MODEL 

In the section, we formulate the optimization procedure to find the optimal feeding rate and switching instant time for 

(3) 
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the feeding process of glucose. We use the total of ethanol concentrations as the objective function to determine whether 

the supply function u~  in (4) produces optimal ethanol concentration. Therefore the maximization of ethanol 

concentration problem can be defined as follows, 

 
1

70
max max ( , , )
G D G D

J s t G dt
 

                                           (7) 

for fixed .~ D  This optimization formulation shows that when the feeding process is delayed about ,~ from (7), we may 

determine a parameter G
~

so thet the ethanol production can be maximized. Regarding the existence and the stability 

conditions for the positive steady state solution of system (3), in the previous study (see [9]) we have observed that the 

maximum rate of inflows at all reaction stages should be less then their maximum rate of outflows. This condition will 

guarantee that the solution of our system will converge to the positive and stable steady state solution. As consequence, 

there is an inequality constrain on control variables, i.e. .~
1vu   Introducing a positive variable  , we transform this 

inequality constrain to become an equality constrain, 

 .0)~()~( 1  vuuc  (8)                                          

Let 
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   
 

, (9)                            

with )...,,()~,( 71 ffusf   and 1 7( , , ) ( ,..., ).s t G s s   Therefore the optimization problem for fixed ,1~0,~   can 

be rewritten as follows, 
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with control variables ),
~

( Gp  and admissible range 

  2 |0 , 0uD p G G      .      (11)                                  

To replace the constrain optimization problem (10) into an unconstrain opetimization problem, we introduce a 

Lagrangian funtional,  

  
1

70
( , , ) ( , , ) ( ) ( , )Ts p s t p t F s u dt   L ,            (12) 

with Lagrange multipliers dasdasd. The first-order necessary optimality condition of the optimalization problem (10) 

states that the optimum is a stationary point of the functional L , ( , , ) 0,s p L   where is gradient operator [12]. 

From / 0  L  we obtain the metabolic system ( , )s f s u  and constain 0)~( uc . From / 0s  L , we get  
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Finally, from / 0,p  L we get 

0,1 8

0.8

G
 


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
  




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

L

L
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4. COMPUTATIONAL PROCEDURE AND NUMERICAL RESULTS 

In this secrion we present some numerical simulations for the system using kinetic data in Table 1. We assume the 

final time of reaction is tf = 24 hours and initial concentration for the first substrate is S1(0)=0.2g/l and zero otherwise. 

Using the final time of reaction and initial condition for S1, the kinetic parameters in Table 1 can be normalized.  

Table 1: Kinetic parameters for S. cerevisiae, reported by Lei et al. (2001) and schomburg et al. (2013). The unit of the 

kinetic parameters from schomburg et al. (2013) was converted by using their molecular weights 

Par Value Unit Ref. Par Value Unit Ref. 

i  0.38 
1h 

  
 [6] 6K  42.64 10  

1g l 
  

 [6] 

1K  2.43 
1g l 

  
 [13] 6V  8.4  

1 1g g h  
  

 [6] 

1V  63.07 
1 1g g h  

  
 [13] fK5  034.0  

1g l 
  

 [6] 

2K  237.5 
1g l 

  
 [13] fV5  82.2  

1 1g g h  
  

 [6] 

2V  648 
1 1g g h  

  
 [13] bK 5  057.0  

1g l 
  

 [6] 

3K  52 10  
1g l 

  
 [6] bV5  0125.0  

1 1g g h  
  

 [6] 

3V  0.501 
1 1g g h  

  
 [6] 7K  0102.0  

1g l 
  

 [6] 

4K  75 10  
1g l 

  
 [6] 7V  0104.0  

1 1g g h  
  

 [6] 

4V  5.81 
1 1g g h  

  
 [6]     

For the case of the on-off supply, the optimization problem can be solved using any optimalization technique such as 

gradient-based method. In this study, we approximate the optimal solution by using the Steepest Descent (SD) method 

(see [14] for detail about the SD method). Due to the sensitivity of the SD method to the initial searching step, here we 

use a population based approach to determine the best initial guess for the SD method. Using Sobol Sequence, we 

generate initial population randomly. This method will ensure that the population is generated randomly in all area of the 

domain search (for detail about the method see for example [15]). Subsequently, the centers of the population are 

determined using clustering technique, and then the best individual is chosen to become the initial guess fo the SD 

method. Here, we use c-means fuzzy clustering with Xie-Beni to determine number of cluster (see for example 

[16,17,18] for detail about the method). The computational produce is given as follows: 

(1) Set the switching time )1,0(~  and initial step size .00   

(2) Randomly generate an intial population for Dp
~

  and 8  with a number of individuals using the following 

equation, 

  ),( lul xxrxx                                                                            (16) 

where r is a quasi-random parameter which is generated from [0,1] using Sobol Sequence and )(ulx  is the lower 

(upper) bound vector of the optimization variables. Here the upper bound of glucose supply is taken from [19], i.e. 

1 17.5G gl hu
  . In dimensionless term we have .900

~
uG  
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(3) Cluster the population to find the centers. 

(4) Evaluate the objective function J on the centers and find the best individual. 

(5) Set the best individual as the initial guess for the SD method. 

(6) Solve system (3) using a forward Runge Kutta method. 

(7) Compute the actual objetive function J. 

(8) Solve system (13) using a backward Runge Kutta method. 

(9) Calculate the gradient equations in (15). 

(10) Update x using the following equation,  

  ,1 sdkkk hxx 
                                                                           (17) 

where  / 20
k

k   is the step size which is adapted in every iteration and hsd is the normalized gradient of L  at 

,kx  

  
( )

( )
( )

xkh xsd k
xk






L
L

.                                                                            (18) 

(11) Return to step 6, unless termination criteria is satisfied. 

 

 

Figure 2: The scatter plot of the optimal total of dimensionless ethanol concentrain J with respect to the optimal 

dimensionless glucose supply G
~  for fixed dimensionless switching instant time ~ . 

By applying these numerical procedures for different switching instant time ~ , we get the scatter plot of the total 

ethanol concentration with respect to the optimal glucose supply which is depited in figure 4. We observe that total of 

ethanol concentration resulted from the on-off supply does not give the highest prodution compared to the continuous 

one (no delay). However, when the feeding supply is delayed about ~ time, the results provide some alternative ways in 

determining how much the feeding rate should be set to attain an optimal ethanol production. For instance, when the 

feeding process is delayed about ,1.0~  the fermentation process will achieve the optimal ethanol production when the 

nutrient is supplied about 756.92G  . Furthermore, we remark that experimental data from [6,19], G=5.7 g/l  684G   

produces total of dimensionless ethanol concertration for continuous supply, 7.72Jc   (see Figure 4). According to our 

model, it does not give a maximum ethanol production. The similar result can be obtained by delay the feeding process 

about 15.0~   and set the glucose supply at .93.756
~
G  It indicates that by applying these regulation rules, we can 

reduce total of glucose supply used along the on-off fermentation system about 5.94 % of the total of glucose supply used 

in the continuous fermentation system. So does for the feeding processing time which can be shortened about 15% of the 

continuous fermentation time. 
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Figure 3: Comparison of glucose supply using to ontinuous method (solid line) and the on-off method (dashed line) 

 

Figure 4: Comparison of ethanol production resulted from the continuous supply (solid line) and the on-off supply 

(dashed line). 

5. CONCLUSIONS  

In this paper we investigated a kinetic model of fermentation system of single yeast cell. We modeled the feeding 

process as an on-off feeding process as the external control to find the optimal supply for fixed time of supply. We used 

total of ethanol concentration as the objective in the optimization process. We found that for a certain delay of feeding 

process there was a certain supply in which the production of ethanol attained an optimal solution. The longer feeding 

process, the greater feeding supply was. Our results may be used as a guidance in the experiment to decide which is the 

appropriate feeding rule in the fermentation process such that the optimal desired product can be obtained. 
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