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1. INTRODUCTION

Neutrosophy is a branch of philosophy, which emphasizes the origin and nature of neutralites, along with their
interaction with different conceptive domains. Fuzzy logic [1] extends classical logic by assigning a membership
function ranging in degree between 0 and 1 to the variables. As a generalization of fuzzy logic, neutrosophic logic
introduces a new component called indeterminacy and carries more information than fuzzy logic. The application of
neutrosophic logic would lead to better performance than fuzzy logic. Neutrosophic logic is so new that its use in many
fields merits exploration. The concept of Neutrosophic set was introduced by F. Smarandache [2,3,4,5,6]. It is a
mathematical tool for handling problems involving imprecise, indeterminacy and inconsistent data. In neutrosophic logic
a proposition has a degree of truth(T), a degree of indeterminacy(l) and a degree of falsity (F), where T, I, F are standard
or non-standard subsets of ]0, 1" [. But in real life application in scientific and Engineering problems it is difficult to use
neutrosophic set with value from real standard or non-standard subset of ] -0, 1+ [. Hence 1. Arockiarani et.al [7] consider
the neutrosophic set which takes the value from the subset of [0, 1]. Intuitionistic fuzzy sets [ 10,11] and interval valued
intuitionistic fuzzy sets [ 12] can only handle incomplete information and inconsistent information which exist
commonly in real situations. The focus of this paper is to initiate the concept of subgroupoids in fuzzy neutrosophic set.
This paper elucidates the fuzzy neutrosophic subgroupoids and derives the results associated with it.

2. PRELIMINARIES

Definition 2.1: [7] A Fuzzy neutrosophic set A on the universe of discourse X is defined as
A={x, Ty (x), I, (x),Ey (x)),x €X where T, I, F: X —[0,1]and 0<T,(X) + 1 ,(X) + F,(x)<3

Definition 2.2: [7] Let X be a non- empty set, and A= <X,TA(X), 1,(%), FA(X)>, B =<X,TB (%), 15(x), R (X)>

(i) AcB forallxif T,(X) <Tg(X), 1,(X)<15(X) , Fo(X) > F;(X).

(i) AUB=(x,max (T,(x),Tg (x)), max(1,(x), 15 (x)), min( F, (x), F5 (x)))..

(i) AN B=(x,min (T, (x), T3 (X)), min(l ,(x), 15 (x)), max(F, (x), Fg (x))).

(iv) AB ()= (X, min (T, (x), Fy (X)), min(1 , (X)L 1 (X)), max(F, (x), T5 (X))).
Definition 2.3: [7] A Fuzzy neutrosophic set A over the universe X is said to be null or empty Fuzzy neutrosophic set if
Ta(X) =0, 1a(X) =0, Fa(x) = 1 for all x € X. It is denoted by ON .

Definition 2.4: [7] A Fuzzy neutrosophic set A over the universe X is said to be absolute (universe) Fuzzy neutrosophic
setif Ta(X) =1, Ia(X) =1, Fa(x) =0 forall x eX. Itis denoted by 1,

Definition 2.5: [7] The complement of a Fuzzy neutrosophic set A is denoted by A° and is defined as
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A= (X, T, ()1, (%), F,e (00) where T, ()= Fo(X) , 1. () =1=1,(2), F,. () =T, (%)
The complement of a Fuzzy neutrosophic set A can also be defined as A°= 1, — A.
Definition 2.6: [8] Let X and Y be two non- empty setsand f : X —Y be a function.
iy 1fB :{<y,TB (y) l1z(y), Fg (y)) ye Y}is a fuzzy neutrosophic set in Y then the pre image of B under

f denoted by T *(B), is the fuzzy neutrosophic set in X defined by
£4(B) = {(x, £ (T (0), F (15 (X)), FH(Fy ()i xe X |
Where (T4 (X)) =T, (f (X))
(i) If A= {<X,TB (x), 15(x), Fg (X)> xe X }is a fuzzy neutrosophic set in X then the image of A under
f ,denoted by f (A) ,is the fuzzy neutrosophic set in Y defined by

F(A) ={ly, F T ), L)), T (Fa(y):y €Y | where
Sup T,(x) if f*(y)=0,

T () =)

0 otherwise

Sup 1,(x) if f7(y)=0,

(L (y) =0

0 otherwise

inf F,(x) if f7(y)#0,
F(Fa(y)) =1 o)
1 otherwise
And f_(F\(y)=@1-fA-F,)y
Definition 2.7: [9] Let (X,.) beagroupand let A be fuzzy neutrosophic set in

X . Then A is called a fuzzy neutrosophic group (in short, FNG) in X if it satisfies
the following conditions: (i) T, (Xy) =T, (X) ATA(Y), 1 ,(Xy) 21, (X) A1,(y) and

FA(y) < FL(¥) v FA(Y) (i) TA(Xil) > T, (), IA(Xil) > 1,(x), FA(Xil) <FA (%)

3. FUZZY NEUTROSOPHIC POINT AND FUZZY NEUTROSOPHIC PRODUCT
Definition 3.1: Let p,q,re [0,1] and P+ q+ r<3.A fuzzy neutrosophic point X(p.aur) OF X is the fuzzy

,a,r if x=
neutrosophic setin X defined by X (y) = (P.G.1) . y,for each y € X
(P.a1) (0,01) if y=x

Definition 3.2: A fuzzy neutrosophic point Xp.an) is said to belong to a fuzzy neutrosophic set

A=(T,, 14, F4) in X denoted by Xpan €A PSTA(X),q=<1,(X),r < F,(X). We denote the set of all
fuzzy neutrosophic points in X as FNP(X).

Theorem 3.3: Let A= <TA, I, FA> and B = <TB, I, Fg > be fuzzy neutrosophic sets in X ,then A < B if and only
if for each X, oy € FNP(X), X, o1y € A= X0 € B-

Proof: Let Ac Band X, .y € Athen p<T,(X) <Tg(X),q=<1,(X)<Iz(X)and r = F,(X) > F5(X) .Thus
X(pqr € B Conversely, take X, .y € FNP(X), X, o1y € A= X, €Band X e X.

Let p=TA(X),q=1,(X),r=F,(X).Then X, ,  is a fuzzy neutrosophic pointin X and X, € A.

By the hypothesis, X, ) € B .Thus T,(X) = p <Tg(X),1,(X) =g < 15(X), Fo(X) =1 = F;(X) Hence
AcB.
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Theorem3.4: Let A= <TA, I, FA> be a fuzzy neutrosophic set of X .Then A = U{X(p’q'r) Kepar) € A}.
Definition3.5: Let X beasetand let p,q,re [0,1] with P+ + r <3 .Then the fuzzy neutrosophic support
Cp.qr) € X is defined by for each

xe X ’C(p,q,r) (x)=(p.q,r) -(i-e--)Tc(p‘q’r) (x)=p, Ic(p.q.r) (x)=4q, Fc(p,q,,) x)=r.

Definition 3.6: [3]Let (X,.) be a groupoid and let Aand B be two fuzzy neutrosophic sets in X .Then the fuzzy
neutrosophic product of Aand B, Ao B is defined as follows: for any xe X ,

v [T (V) ATy (2)] for each(y, z) € X x X with yz = x,
Tag(X) =97 _

0 otherwise

v [ (y) A l4(2)] for each(y, z) € X x X with yz = X,
I ps (X) =977 _

otherwise

A [Fa(y) v Fy (2)] for each(y, z) € X x X with yz = X,
Fag (X) =" _

1 otherwise

Proposition 3.7:

Let “o” be as above, let X, 4, Y4z, DE two fuzzy neutrosophic points and let A, B € FNS(X) Then
@ Xap Vi) = OV anaprpyry @ AB= UXws © Vs -

Xap.)EAY(a,py) €B

Proof: Let Z € X .Then
v [TXW OOAT, (y)] foreach(x,y") e X x X with x'y'=z

(2) =4 xy=
X, py) Yia gy B
e 0 otherwise
_Jana' if xy=z
1o otherwise
Similarly
"if xy=1z
e @=pr e
e 0 otherwise
AP, OOVE, (y)] foreach(x,y) e X x X with x'y'=z
X(a,p.0) V(@' 57 (Z) = .
1 otherwise
rvy it xy=z
1 otherwise

Hence X(a,,b’,;/) o y(a-,,;-,;,') = (Xy) (ana',BAB 7V "

(2) Let C = Ux(aﬁ,y) Yy p. Lt We X and we may assume that there exist U,V € X such that
X(a,p.0 A Y (a5 B

uv=w,T,(u)=0,1,(u)#0,F,(u) #1land T (u) =0, 1, (u) =0, F; (u) = 1.
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Tas(W) = v/ [Ta(U) AT (V)]

uv=w

>y v T, AT, @]=Tew)

UV=W X4 4,,) eA, Yia'5'7) eB

SInCe u(TA(U)JA(U)yFA(U)) € A and V(TB(U),|B(U),FB(U)) € B

Tc(w) = \V4 V |.Tx(a,/f,7) (u) A Ty(a:ﬂur‘) (V)J

Xiapr) EAY(ar ) €B UV=W

= v[ v T @AT, (v)]}

uv=w X(a,/i,y)EA'y(a"/f",y‘)EB

=V [TU(TA(u),IA(u),FA(u)) (W AT 1, ) Fa ) (V)]= Vv [TA (U) AT (U)] =Tps (W)

uv=w uv=w

Thus T, g =T¢
Similarly, 1,5 =1¢

Fas (W) = A [Falt)vFg(v)]

uv=w

< A A o VE, 0)]=Fw)

UV=W X(4,4.,) eA, Yia' 7" B

Slnce u(TA(U),lA(U)xFA(U)) € A and V(TB(U)rIB(u)!FB(u)) € B

FFw= A AlR., @vF_ o]

X, 8.7) eA,y(a.‘ﬁ";,) eB uv=w

_— ( A Fo @vVF, (v)]}

Yia'p7)

uv=w x(a‘ﬂvy)eA,y(a"ﬂvvyv)eB
S A [FU(TA(U),IA(U),FA(U)) (u)v FV(TA(v),IA(v),FA(v)) (V)]: A [FA (u)v kg (U)]: Fas (W)
uv=w uv=w
Thus F, 5 = F..Hence Ao B = Ux(a,ﬂw) Y gy -

Xa.p,7)EAY(a pr7) €B
The following proposition holds from definition 3.6.

Proposition 3.7: Let (X,.) be a groupoid and let ““© ” be as above.
(1) If “” isassociative (respectively commutative) in X ,then so is “o”in FNS(X).
(2) If “”hasaunity € € X ,then €, o € FNP(X) is a unity of “o” in FNS(X).

(ie.) A€y g =A=€y, o Aforeach Ae FNS(X).
Proof: Proof is immediate.
4, FUZZY NEUTROSOPHIC SUBGROUPOIDS AND IDEALS

Definition 4.1: Let (G,.) be a groupoid and let 0, # A€ FNS(G) .Then Ais called a fuzzy neutrosophic
subgroupoid in G (in short, FNSGP in G)if Ac AcC A.

Definition 4.2: Let (G,.) be a groupoid and let A€ FNS(X) .Then Alis called a fuzzy neutrosophic subgroupoid in
G (inshort, FNSGP in G)ifforany X,y € G, T,(Xy) 2 T,(X) AT, (), 1,(xy) 2 1,(X) Al,(y) and
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Fo(Xy) <F,(X) v F,(y) .Itisclear that O and 1, are both FNSGPsof G .

The following are the immediate results of Definition 3.6 and Definition 4.1.

Proposition 4.3: Let (G,.) be a groupoid and let 0, # A € FNS(G) .Then the following conditions are equivalent:
(1) Aisa FNSGP in G.

() Forany X 5.0 Y sy € A Xapy © Y pyy €A

(i.e.,) (A,) is a groupoid.

@) Forany X,y € X To(Xy) ZTo(X) ATA(Y), Ta(xy) 2 1,() AT, (Y) and FL(xy) < FL(X) v FA(Y)
Proposition 4.4: Let A bea FNSGP in a groupoid (G,.).
(1) If «” isassociative in G ,thensois“ o”in A (i.e.,) for any
Xap Y pnZamr €A Kapn ©Yapn) © e = Xapn © Vs © Zapm)
(2) If<” is commutative in G ,then sois“ o in A (i.e.,) for any
X Yeapr) € Xapp Yy =Y ° Xapn:
(3) 1< hasaunity e G then €0 ° Xy, 5.y = X py) = Xapy) © €aro foreach X, 5 o € A.

Proof: Proof is obvious.

Definition 4.5: Let G be a groupoid and let A € FNS(G) .Then A is called a:

(1) fuzzy neutrosophic left ideal (in short FNLI ) of G if for any
X,y €G,A(Xy) = A(Y) (ie.)To(xy) 2 To(Y), La(xy) 2 1,(y) and F,(xy) < F,(Y)

(2) fuzzy neutrosophic right ideal (in short FNRI) of G if for any
X,y €G, AGXY) 2 AX) (e Ty (9) 2 T, (%), 1,09) = 1, (x)and F, (xy) < F, (¥)
(3) fuzzy neutrosophic ideal (in short FNI ) of G ifitisbotha FNLI and FNRI

Itis clear that A isa FNI of G ifand only if for any

Xy €G To(0) 2T, 00 v Ta(0), 1, 00) 2 1,00 1, (y) and F () < F, (%) A Fy (¥) -Moreover
.a FNI (respectively FNLI, FNRI)isa FNSGP of G .Note that for any FNSGP A of G we have

T,(X")>T,(X), 1,(x")>1,(x)and F,(x") <F,(X) foreach x € G, where X" is any composite of
X’s.

We will denote the set of all FNSGPs of G as FNSGP(G) .

Definition 4.6: Let A be a fuzzy neutrosophic setin X and let A, &,v € | with 4+ g+v <3 .Then the set

XG0 —{xe X 1 AX) 2 Cy, ) ()} =X e X T, ()2 2,1, > u,F, <v}iscalleda (4, 4,v) — level
subset of A.

Proposition 4.7: Let G be a groupoid and let 4, ,v € | with A+ g +v <3.1f Aisa FNI (respectively
FNLI, FNRI) of G then G{**"” is a subgroupoid or a (left, right) ideal of G .

Proof: Suppose A € FNSGP(G)and let X, y € G{***) .Then T,(X) = A, 1 ,(X) > s, F,(X) < v and
T, ()= A, 1,(y) =, F(y) <v.Since A e FNSGP(G),
TA(xy) Z2TA(X) ATA(Y) 1A (xY) 2 1, () A TA(Y), FAOY) < FA(X) v FA(Y).
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Thus T,(Xy) > A, 1, (Xy) > 2, F, (Xy) <v.So xy € G{**) Hence G{*") is a left ideal of G .By the similar

(4.uv)
A

argument,we can easily check that G is a (right) ideal of G .This completes the proof.

Proposition 4.8: Let {A | _ — FNSGP(G) .Then ﬂ A, € FNSGP(G).

ael’

acll & gell @ gell @

aell

Proof: Let A:ﬂAaandlet X,y € G .Then A:( A TA N IA , Vv FA j

TAOD= A Tp 002 A |Ta (92Ta )] :(aérTAa (x)jA(angAa (y)j =T 0OAT ().

similarly, 1,(xy)>1,(x) A 1,(y)

FAO)= v Fa ()< v P (X)VFAa(y)HaV Fa, (X)Mav FAa(y)JzFMx)vFA(y)

acll  « oe el’ el

Hence ﬂAa isa FNSGP of G.

ael’

Proposition 4.9: Let {A_} __ beany familyof FNI's (FNLIs, FNRIs).Then N A or U A, isa
ael’ ael
FNI(FNLI, FNRI).

Proof: Let G be a groupoid and let {Aa }aer be any family of FNIS(FNLIs, FNRIS) of G .Let A= (1 A, and let

aell

X,yeG.
Suppose {Aa }aer is a family of FNLIsof G.Then T,(Xxy) = VFTAa (xy) > /\FTAa (y).(Since A, isa FNLI of
G foreach & €T). Similarly, 1,(xy) = v Iy (Xy) 2 A Iy ().

F.(xy) = v Fa, (xXy) < v Fa, (Y) . (Since A, isa FNLIof G foreach o €I')

So A= (1 A, isa FNLI of G .By the similar arguments, we can easily check that the remainders hold. Also we can

ael’

seethat U A, isa FNI(FNLI, FNRI).This completes the proof.

aell

5. HOMOMORPHISMS
Proposition 5.1: Let f : G — G" be a groupoid homomorphism and let B € FNS(G")

(1) If Be FNSGP(G") then f '(B) e FNSGP(G).
(2) 1f Bisa FNI(FNLI, FNRI)of G" then f (B) isa FNI(FNLI, FNRI) of G..
Proof: (1) By definition 2.6, f *(B) =(f *(T,), f *(I5), f *(Fy)) where (T, (X)) =Ty (f (X))
Let X,y €G Then T,y (x9) = T (T (9)) =T (F(xy)
=T, (f(X)f (y)) (since f is a groupoid homomorphism)
2T (F(X)) AT (F(Y) = f (T ) A F 7 (Ta(y))
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Similarly, | t1(B) xy)= f (X)) A FH(15(Y)).
Fii ) = T (Fa (xy)) = Fa (T (xy))

=F,(f(X)f(y)) Gsince f isa groupoid homomorphism)

<F(FON AR (F(y) = f (R () A T (Fe(¥))-
Hence f(B) e FNSGP(G).
(2) By the similar arguments of the proof of (1), it is clear.

Definition 5.2: Let A€ FNS(G) .Then A is said to have the sup property if forany T € P(G) ,there exists a
t, €T suchthat A(t,) = U A(t).ie, T,(t,) :thTA(t), I,(t) =V I, (1), FA(ty) =A F,(t) where P(G)
teT € € e

denotes the power set of G .

Remark 5.3: Let A€ FNS(G).If A can take only finitely many values (in particular, if they are characteristic
function), then A has the sup property.

Proposition 5.4: Let f : G — G" be a groupoid homomorphism and let A € FNS(G) have the sup property.
(1) If  AeFNSGP(G) then f(A) e FNSGP(G").
) If Aisa FNI(FNLI, FNRI)of G ,then f(A)isa FNI(FNLI, FNRI)of G".

Proof: (1) Let Y, y'e G".Then we can consider four cases:
M )= f7(y)=¢
@) FH ()= f7(y)=9¢
iy T (y)=¢, T (y) =4
) FH(y)=¢,F7(y)=9¢

We prove only the case (i) and omit the remainders. Since A has the sup property, there exist X, € f ‘l(y) and

X,'e f (y") such that:

Ta(X) = . \ (TA(XO)’ Ia (%), FA(XO)) ef\’/l

t(y) xef

Ta(%') = V(y)(TA(Xo')a [a(%"), Fa (Xol)): Xef\!l(y)TA(X') :

xef?

T, (X) and
Y)

Then: T (YY') = F(TA)(YY")

= v TA(Z)zTA(XOXO')ZTA(XO)ATA(XO')=(Xef\/l(y)TA(X))A( v, TA(X')j

xef(yy") xef(y)

= f(Ma(Y) A F(TA(Y))
similarly, 15 (YY) = (1L, (Y) A F(1(Y)).
Ff(A) (yyl) = f(FA)(yy')

_ A FA(Z)SFA(XOXO')SFA(X())VFA(XO'):(XEf/\l(y)FA(X))V(XEf/\l(y)FA(X'))

xef(yy)
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= F(F ) v F(Fa(y)):
(2) Proof is similar to the proof of (1).
Definition 5.5: Let f : X —Y be a mapping and let A be a fuzzy neutrosophic setin X .Then A s said to be
f —invariantif f(x)=f(y) = A(X) = A(y) (ie.) TA(X) =T, (¥), 1.(X) = 1,(Y), Fa(X) = F,(Y).
Itis clear that if A is f —invariant, then f (f (A)) = A.

Proposition 5.6: Let f : X — Y be a mapping and let A={Ae FNS(X):Ais f —invarient}.Then f isaone -
to-one correspondence between A and FNS(f (X)) .

Proof: Proof follows from the definition 5.5.

Corollary 5.7: Let f :G — G" be a mapping and let A={A € FNSGP(G): Ais invariant and has sup property}.
Then f is a one-to-one correspondence between A and FNSGP(f (G)).
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