On A Type A Semigroup of Congruence Classes

Paschal U. Offor
Dept. of Mathematics, University of Port Harcourt
Rivers State - Nigeria
Email: paschal81 [AT] yahoo.com

Abstract

A congruence, characterized by J^{*}-relations, is constructed on a regular type \boldsymbol{A} semigroup. The resulting set of congruence classes is shown to be a type A semigroup. Commutativity of the morphisms between the semigroups, described by their kernels, is established.

1. INTRODUCTION

A congruence ρ on a semigroup S is a compatible equivalence on S. The quotient S / ρ can be given a semigroup structure in a natural way and the map $\rho^{*}: S \rightarrow S / \rho$ defined by $x \rho^{t}=x \rho \quad(x \in S)$ is a morphism. ρ is called idempotent - separating if each ρ-class cantains at most one idempotent. ρ is called a group congruence if S / ρ is a group. We, in this piece of article, zero in on the case where S is a type A semigroup.

By constructing a semigroup T consisting of one - one maps between certain left ideals in a type A semigroup S, proving T to be a type A semigroup and then providing a representation of S by T, Asibong Ibe [1] showed that a representation exists for a type A semigroup similar to Vagner - Preston's representation on inverse semigroups. The result of this work (Asibong-lbe's work in [1]) is basically the stem of our own result here.

Here, we construct a congruence and then show that its quotient set is a type A semigroup. We then marry up Asibong's representation in [1] with our construction to produce commuting isomorphisms.

2. PRELIMINARIES

Let S be a semigroup and $a, b \in S$. Then, $(a, b) \in L^{*}$ if $a L b$ in an oversemigroup of S. Thus, by this definition, L^{*} contains the Green's relation L on S. In an alternative characterisation, Lawson in [7] gave that for $a, b \in S,(a, b) \in L^{*}$ if $\forall x, y \in S^{1}, a x=a y$ if and if $b x=b y$.

Lemma 2.1: Let S be a semigroup and e an idempotent in S. Then, $\forall a \in S$, the following are equivalent:

$$
\begin{array}{ll}
\text { i) }(e, a) \in L^{*} \quad \text { and } & \text { (ii) } \forall x, y \in S, a x=a y \text { if and if } e x=e y \text {. }
\end{array}
$$

R^{*} is dual to L^{*} and the above definition of L^{*} apply in dual manner to R^{*}.
The intersection of L^{*} and R^{*} is denoted by H^{*}. The join of L^{*} and R^{*} on S is the equivalence D^{*}. In general, L^{*} o $R^{*} \neq R^{*}$ o L^{*} and neither equals D^{*}. Basically, $a D^{*} b$ if and only if there exists elements $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in S such that $a L^{*} x_{1} R^{*} x_{2} L^{*} x_{3} \ldots x_{n-1} L^{*} x_{n} R^{*} b$.
$D \subseteq D^{*}$ and $H \subseteq H^{*}$. If S is regular, then $L=L^{*}$ and $R=R^{*}$.

Let S be a semigroup and I an ideal of S. Then I is called ${ }^{*}$-ideal if $L_{a}^{*} \subseteq I$ and $R_{a}^{*} \subseteq I$ for all $a \in I$. The smallest ${ }^{*}$-ideal containing a is the principal ${ }^{*}$-ideal generated by a and is denoted by $J^{*}(a)$. For $a, b \in S$, $a J^{*} b$ if and only if $J^{*}(a)=J^{*}(b)$. The J^{*}-class containing the element $a \in S$ is denoted by J_{a}^{*}

From Lawson in [7], we note that L^{*} is a right congruence and R^{*} is a left congruence. Thus, J^{*} is a congruence and by congruence property, we have -

$$
J_{a}^{*} \cdot J_{a}^{*}=J_{a b}^{*}, \quad\left(J_{a}^{*}\right)^{2}=J_{a}^{*}, \quad J_{a b}^{*} \leq J_{a}^{*}, \quad J_{a b}^{*} \leq J_{b}^{*} . \text { The relation } J^{*} \text { contains } D^{*}
$$

A semigroup S is said to be $*$-simple if all its elements are J^{*} related and *-bisimple semigroup if it contains one D^{*}-class.

A semigroup S is said to be an abundant semigroup if each L^{*}-class and each R^{*}-class contains an idempotent and it is superabundantif each H^{*}-class contains an idempotent.

An abundant semigroup S whose idempotents form a semilattice $E(S)$ is called adequate. In an abundant semigroup, the idempotents in each L^{*}-class and each R^{*}-class are unique. If S is adequate, and a is an element of S, then $a^{*}\left(a^{+}\right)$will denote the unique idempotent in the L^{*} - $\left(R^{*}\right.$-)class of a. Thus, in an adequate semigroup, $a L^{*} b \Leftrightarrow a^{*}=b^{*}$ and $a R^{*} b \Leftrightarrow a^{+}=b^{+}$

An adequate semigroup S is said to be a type A semigroup if for each a in S and e in $E(S), e a=a(e a)^{*}$ and $a e=(a e)^{+} a$.

Fountain in [4] characterised a type A semigroup as follows:
Lemma 2.2: Let S be an adequate semigroup. Then, $\forall a \in S$ and $\forall e \in E(S)$, the following are equivalent:
(i) $\quad S$ is a type A semigroup.
(ii) $\quad e S^{1} \cap a S^{1}=e a S^{1}$ and $S^{1} e \cap S^{1} a=S^{1} a e$ and
(iii) There exist embeddings $\lambda_{1}: S \rightarrow S_{1}$ and $\lambda_{2}: S \rightarrow S_{2}$ into inverse semigroup S_{1}, S_{2} such that $a^{*} \lambda_{1}=\left(a \lambda_{1}\right)^{-1}\left(a \lambda_{1}\right)$ and $a^{+} \lambda_{2}=\left(a \lambda_{2}\right)\left(a \lambda_{2}\right)^{-1}$.

A type A semigroup is called a *-bisimple semigroup if it contains precisely one D^{*}-class and one regular D class.

Let S be a type A semigroup with $a, b \in S$. The relation \widetilde{D} is defined on S by $(a, b) \in \widetilde{D}$ if and only if $\left(a^{*}, b^{*}\right) \in D$ and $\left(a^{+}, b^{+}\right) \in D$ for some $a^{*}, b^{*} a^{+}$and $b^{+} . \widetilde{D}$ is an equivalence relation and the inclusion$D \subseteq \widetilde{D} \subseteq D^{*}$ holds.

Asibong - Ibe [2] showed that for an adequate semigroup S, D^{*} and \widetilde{D} coincide if and only if every nonempty H^{*}-class contains a regular element. The equality - $D^{*}=\widetilde{D}$, guarantees the equality $-D^{*}=\mathrm{L}^{*} \mathrm{oR}^{*}=\mathrm{R}^{*} \mathrm{oL}^{*}$.

A semigroup homomorphism $\rho: S \rightarrow T$ is said to be a good homomorphism if for all $a, b \in S, a L^{*}(S) b$ implies $a \rho L^{*}(T) b \rho$ and that $a R^{*}(S) b$ implies $a \rho R^{*}(T) b \rho$.

A congruence δ on a semigroup S is said to be a good congruence if the natural homomorphism from S onto S / δ is good.

The following lemmas are adapted from El-Qallali in [3] :
Lemma 2.3: Let S be an abundant semigroup and $\rho: S \rightarrow T$ a semigroup homomorphism. Then the following statements are equivalent:
i. The homomorphism ρ is good
ii. For each element $a \in S$, there are idempotents e, f, with $e \in L_{a}^{*}, f \in R_{a}^{*}$ such that $a \rho L^{*}(T) e \rho$ and $a \rho R^{*}(T) f \rho$

Lemma 2.4: Let ρ be a congruence on ab abndant semigroup S. Then the following statements are equivalent:
i. $\quad \rho$ is a good congruence
ii. For all $a \in S$, there are idempotents e, f, with $e \in L_{a}^{*}, f \in R_{a}^{*}$ such that $a \rho L^{*}(S / \rho) e \rho$ and $a \rho R^{*}(S / \rho) f \rho$

It therefore implies that a congruence ρ on an abundant semigroup S is good if $\forall a \in S$ and $\forall x, y \in S^{1}$ there are idempotents e, f, with $e L^{*} a, f R^{*} a$ such that $(a x, a y) \in \rho$ implies $(e x, e y) \in \rho$ and $(x a, y a) \in \rho$ implies $(x f, y f) \in \rho$. Corresponding interpretation also goes to a good homomorphism on an abundant semigroup.

In general, the homomorphic image of an abundant semigroup is not abundant. We however can quote from [8] that the good homomorphic image of an abundant semigroup is always abundant. The following lemma comes from [8]

Lemma 1.5: The intersection of good congruences is a congruence.
Proof: Let ρ, σ be good congruences and suppose $a \in S$ and that ($a x, a y$) $\in \rho \cap \sigma$ for all $x, y \in S^{1}$. Then $(a x, a y) \in \rho \quad$ and $\quad(a x, a y) \in \sigma \quad$ and therefore for some $e_{1}, e_{2} \in L_{a}^{*} \cap E(S),\left(e_{1} x, e_{1} y\right) \in \rho$ and $\left(e_{2} x, e_{2} y\right) \in \sigma$. Now, for some $e \in L_{a}^{*} \cap E(S),\left(e e_{1} x, e e_{1} y\right) \in \rho$ and $\left(e e_{2} x, e e_{2} y\right) \in \sigma$. Since e_{1}, e_{2} are right identities in L_{a}^{*}, we have $(e x, e y) \in \rho \cap \sigma$. Similarly, $[(x a, y a) \in \rho \cap \sigma] \Rightarrow[(x f, y f) \in \rho \cap \sigma]$ for some $f \in R_{a}^{*} \cap E(S)$.

We conclude the section with the following definitions:
A semigroup homomorphism $\varphi: S \rightarrow T$ is said to be a ${ }^{*}$-homomorphism if for all $a, b \in S, a L^{*}(S) b$ if and only if $a \varphi L^{*}(T) b \varphi$ and $a R^{*}(S) b$ if and only if $a \varphi R^{*}(T) b \varphi$.

A congruence δ on a semigroup S is said to be a ${ }^{*}$-congruence if the natural homomorphism from S onto S / δ is a ${ }^{*}$-homomorphism.

3. A CONGRUENCE ON A TYPE A SEMIGROUP

In this and subsequent sections, the term semigroup S will refer to a regular type A semigroup S with $E(S)$ as its set of idempotents. We recall that a semigroup S is called regular if for all $a \in S$ there exists $x \in S$ such that $a x a=a$. Now, for $a \in S, a^{+}, a^{*} \in E(S), a^{+}=a a^{-1}, a^{*}=a^{-1} a$ and $a a^{*}=a^{+} a=a$.

Lemma 3.1: For all $a, b \in S$, the following statements are true:
i) $\quad a^{*} b^{+}=\left(a b^{+}\right)^{*}$
iii) $\quad a^{++}=a^{+}$
v) $\quad a^{*} b=b(a b)^{*}$
ii) $\quad a\left(a b^{+}\right)^{*}=\left(a b^{+}\right)^{+} a$
iv) $\quad\left(a b^{+}\right)^{+}=(a b)^{+}$
vi) $\quad(a b)^{*}=\left(a^{*} b\right)^{*}$

Let S be a type A semigroup S and $E(S)$ its semilattice of idempotents. Now let the J^{*}-class containing an element $e \in E(S)$ be denoted by $E(e)$. For $a, b \in S$, define a relation δ on S by $(a, b) \in \delta$ if and only if $b=e a f$ and $a=g b h$ for some $e \in E\left(a^{+}\right), f \in E\left(a^{*}\right), g \in E\left(b^{+}\right)$and $h \in E\left(b^{*}\right)$.

Lemma 3.2: \quad Then, δ is a congruence on S.
Proof: We start by showing that δ is an equivalence.
$(a, a) \in \delta$ since $a^{+} a a^{*}=a a^{*}=a$ for $a^{+} \in E\left(a^{+}\right)$and $a^{*} \in E\left(a^{*}\right)$. Thus, δ is reflexive.
By definition, δ is symmetric. For transitivity, let $(a, b) \in \delta$ and $(b, c) \in \delta$ with $a, b, c \in S$. Therefore, for some $e_{1} \in E\left(a^{+}\right), f_{1} \in E\left(a^{*}\right), g_{1}, g_{2} \in E\left(b^{+}\right), h_{1}, h_{2} \in E\left(b^{*}\right), e_{2} \in E\left(c^{+}\right)$and $f_{2} \in E\left(c^{*}\right)$,

$$
b=e_{1} a f_{1} \text { and } a=g_{1} b h_{1} \quad ; \quad b=e_{2} c f_{2} \text { and } c=g_{2} b h_{2}
$$

So that $\quad a=g_{1} e_{2} c f_{2} h_{1}$ and $c=g_{2} e_{1} a f_{1} h_{2}$
With $\quad g_{1} e_{2} \in E\left(b^{+} c^{+}\right)=E\left(c^{+} b^{+}\right) \subseteq E\left(c^{+}\right)$and $f_{2} h_{1} \in E\left(c^{*} b^{*}\right)=E\left(b^{*} c^{*}\right) \subseteq E\left(c^{*}\right)$;
$g_{2} e_{1} \in E\left(b^{+} a^{+}\right)=E\left(a^{+} b^{+}\right) \subseteq E\left(a^{+}\right)$and $f_{1} h_{2} \in E\left(a^{*} b^{*}\right)=E\left(b^{*} a^{*}\right) \subseteq E\left(a^{*}\right)$.
Hence, $(a, c) \in \delta$, which establishes transitivity of δ.
Now, for compatibility of δ, assume $(a, b) \in \delta$ so that $b=e a f$ and $a=g b h$ for some $e \in E\left(a^{+}\right)$, $f \in E\left(a^{*}\right), g \in E\left(b^{+}\right)$and $h \in E\left(b^{*}\right)$. For any $c \in S, b c=e a f c$.

If we choose f to be equal to a^{*}, then $b c=e a a^{*} c=e a c(a c)^{*}=e(a c)^{+} a c(a c)^{*}$.
We recall that each $E(e),[e \in E(S)]$, is a J^{*}-class and therefore a congruence class. So that

$$
e(a c)^{+} \in E\left(a^{+}\right) \cdot E(a c)^{+}=E\left(a^{+}\right)(a c)^{+}=E(a c)^{+}\left(a^{+}\right) \subseteq E(a c)^{+}
$$

And if we choose h to be equal to b^{*},

$$
a c=g b b^{*} c=g b c(b c)^{*}=g(b c)^{+} b c(b c)^{*}, g(b c)^{+} \in E(b c)^{+}
$$

Therefore, $(a c, b c) \in \delta$. Thus, δ is right compatible. Proof of left compatibility of δ comes in a similar fashion. We therefore conclude that δ is a congruence.

Proposition 3.3: δ is good on S.
Proof: For $a, x, y \in S$, let $(a x, a y) \in \delta$. This implies that $a y=e a x f$ and $a x=g a y h$ for some $e \in E(a x)^{+}$, $f \in E(a x)^{*}, g \in E(a y)^{+}$and $h \in E(a y)^{*}$.
$a y=\operatorname{eaxf} \Rightarrow a^{-1} a y=a^{-1} e a x f$. If we choose $e=(a x)^{+}$, then we have
$a^{-1} a y=a^{-1}(a x)^{+} a x f=a^{-1} a x f=\left(a^{-1} a x\right)^{+} a^{-1} a x f$.
$a^{-1} a \in L_{a}^{*}$, and $f \in E(a x)^{*}=E\left(a a^{-1} a x\right)^{*} \subseteq E\left(a^{-1} a x\right)^{*}$
Now, $a x=$ gayh $\Rightarrow a^{-1} a x=a^{-1}$ gayh .
Taking $g=(a y)^{+}$, we have $a^{-1} a x=a^{-1}(a y)^{+} a y h=a^{-1} a y f=\left(a^{-1} a y\right)^{+} a^{-1} a y h$.
$h \in E(a y)^{*}=E\left(a a^{-1} a y\right)^{*} \subseteq E\left(a^{-1} a y\right)^{*}$
We have just shown that for all $a, x, y \in S$, there exists $u=a^{-1} a \in L_{a}^{*}$ such that $\quad[(a x, a y) \in \delta] \Rightarrow$ $[(u x, u y) \in \delta]$.

In a similar approach, it can be shown that $[(x a, y a) \in \delta] \Rightarrow[(x v, y v) \in \delta]$ with $v \in R_{a}^{*}$.
Thus, δ is good.

Having established that δ is a congruence, the very natural next step is to define a binary operation on the quotient set S / δ which is the set of congruence classes of δ. We define the operation in a natural way as follows:

$$
(a \delta)(b \delta)=(a b) \delta
$$

Compatibility of δ makes it possible and easy to see that our operation here is well-defined. We notice that for all $a, b, c, d \in S$,

$$
a \delta=c \delta \text { and } b \delta=d \delta \quad \Rightarrow(a, c) \in \delta \text { and }(b, d) \in \delta \Rightarrow(a b, c d) \in \delta \Rightarrow(a b) \delta=(c d) \delta
$$

Obviously the operation is associative, and therefore S / δ is a semigroup.
Theorem 3.4: S / δ is a type A semigroup.
We establish the proof through the following lemmas:
Lemma 3.5 For all $a, b \in S$,
i. $\quad(a \delta, b \delta) \in L^{*}(S / \delta)$ if and only if $(a, b) \in L^{*}(S)$ and
ii. $\quad(a \delta, b \delta) \in R^{*}(S / \delta)$ if and only if $(a, b) \in R^{*}(S)$

Proof: Assume $(a \delta, b \delta) \in L^{*}(S / \delta)$. This implies that for all $c \delta, d \delta \in S / \delta$ (which implies $\forall c, d \in S$)
$a \delta . c \delta=a \delta . d \delta$ if and only if $b \delta . c \delta=b \delta . d \delta$. That is $a c \delta=a d \delta$ if and only if $b c \delta=b d \delta$
Now, $a c \delta=a d \delta$ means $(a c, a d) \in \delta$ and this implies that for some $e \in E(a c)^{+}, \quad f \in E(a c)^{*}$, $g \in E(a d)^{+}$and $h \in E(a d)^{*}, \quad a d=e a c f$ and $a c=g a d h$

Choosing $e=(a c)^{+}$and $f=(a c)^{*}$, then we have $a d=(a c)^{+} a c(a c)^{*}=a c(a c)^{*}=a c$
Choosing $g=(a d)^{+}$and $f=(a d)^{*}$ will also produce $a c=a d$.
Similarly, taking up $b c \delta=b d \delta$ will produce $b c=b d$. Therefore, $(a, b) \in L^{*}(S)$.
Conversely, let $(a, b) \in L^{*}(S)$. Then for all $c, d \in S, a c=a d$ and $b c=b d$.
Since $a c, a d, b c$ and $b d$ are all in $S, a c \delta, a d \delta, b c \delta$ and $b d \delta$ are all in S / δ.
With $a c=a d$ and $b c=b d$, we have $a c \delta=a d \delta$ and $b c \delta=b d \delta$.
That is $a \delta c \delta=a \delta d \delta$ and $b \delta c \delta=b \delta d \delta$ for all $c \delta, d \delta \in S / \delta$
Thus, $(a \delta, b \delta) \in L^{*}(S / \delta)$.
Proof of (ii) is similar.
The following corollary is consequent upon the right above lemma.
Corollary 3.6 Let $a \delta, b \delta \in S / \delta$, then
i. $\quad(a \delta, b \delta) \in H^{*}(S / \delta)$ if and only if $(a, b) \in H^{*}(S)$ and
ii. $\quad(a \delta, b \delta) \in D^{*}(S / \delta)$ if and only if $(a, b) \in D^{*}(S)$

Proof: (i) $\left[(a \delta, b \delta) \in H^{*}(S / \delta)\right] \Leftrightarrow\left[(a \delta, b \delta) \in L^{*}(S / \delta)\right.$ and $\left.(a \delta, b \delta) \in R^{*}(S / \delta)\right]$

$$
\Leftrightarrow\left[(a, b) \in L^{*}(S) \text { and }(a, b) \in R^{*}(S)\right] \quad \Leftrightarrow \quad(a, b) \in H^{*}(S)
$$

(ii) For some $c_{1} \delta, c_{2} \delta, c_{3} \delta, \ldots, c_{n} \delta \in S / \delta$,

$$
\begin{aligned}
& {\left[(a \delta, b \delta) \in D^{*}(S / \delta)\right] \Leftrightarrow\left[a \delta L^{*}(S / \delta) c_{1} \delta R^{*}(S / \delta) c_{2} \delta L^{*}(S / \delta) c_{3} \delta \ldots c_{n} \delta R^{*}(S / \delta) b \delta\right]} \\
& \Leftrightarrow\left[a L^{*}(S) c_{1} R^{*}(S) c_{2} L^{*}(S) c_{3} \ldots c_{n} R^{*}(S) b\right] \Leftrightarrow(a, b) \in D^{*}(S) .
\end{aligned}
$$

Lemma 3.7 An element $a \delta \in S / \delta$ is an idempotent if and only if $a \in S$ is an idempotent.
$E(S / \delta)$, the set of idempotents of S / δ, is a semilattice.
Proof: Suppose $a \delta$ is idempotent in S / δ. It means that $(a \delta)^{2}=a^{2} \delta=a \delta$. That is $\left(a^{2}, a\right) \in \delta$.
So that for some $\in E\left(a^{2}\right)^{+}, f \in E\left(a^{2}\right)^{*}, g \in E(a)^{+}$and $h \in E(a)^{*}, a=e a^{2} f$ and $a^{2}=g a h$.
Choosing $g=e$ and $h=a f$ guarantees $a=a^{2}$. And $g=e$ and $h=a f$ are well - chosen since $e \in E\left(a^{2}\right)^{+} \subseteq E(a)^{+}$and $a f \in E(a)^{*} . E\left(a^{2}\right)^{*}=E(a)^{*}\left(a^{2}\right)^{*}=E\left(a^{2}\right)^{*}(a)^{*} \subseteq E(a)^{*}$.

Conversely, $a^{2}=a$ implies that $a^{2} \delta=a \delta$. That is $(a \delta)^{2}=a \delta$.
Now, assume $e \delta, f \delta \in E(S / \delta)$. Then $e, f \in E(S)$ and therefore $(e \delta)(f \delta)=e f \delta=f e \delta=(f \delta)(e \delta)$
And if $e \leq f, e f=f e=e$, and so $e \delta f \delta=f \delta e \delta=e \delta$. Thus, $E(S / \delta)$ is a semilattice.
For $a \in S, a^{*} \in L_{a}^{*}, a^{+} \in R_{a}^{*}$ and $a \delta a^{*} \delta=a a^{*} \delta=a \delta, a^{+} \delta a \delta=a^{+} a \delta=a \delta$. So, we evidently have the following facts:

Lemma 3.8 For each $a \delta \in S / \delta, \quad\left(a \delta, a^{*} \delta\right) \in L^{*}(S / \delta)$ and $\quad\left(a \delta, a^{+} \delta\right) \in R^{*}(S / \delta)$.
Furthermore, let $L_{a \delta}^{*}$ and $R_{a \delta}^{*}$ be, respectively, the $L^{*}(S / \delta)$ and $R^{*}(S / \delta)$ classes containing $a \delta$. Let us denote by $a \delta^{*}$ and $a \delta^{+}$the unique idempotents in $L_{a \delta}^{*}$ and $R_{a \delta}^{*}$ respectively.
Now, for $a \in S$ and $e \in E(S), e a=a(e a)^{*}$ and $a e=(a e)^{+} a$.
Consequently, $e \delta a \delta=e a \delta=a(e a)^{*} \delta=[a \delta]\left[(e a)^{*} \delta\right]=[a \delta]\left[(e a \delta)^{*}\right]$

$$
=[a \delta]\left[(e \delta a \delta)^{*}\right]=a \delta(e \delta a \delta)^{*}
$$

Similarly, $a \delta e \delta=(a \delta e \delta)^{+} a \delta$. Thus, we have shown that
Lemma 3.9 For each $a \delta, e \delta \in S / \delta, \quad e \delta a \delta=a \delta(e \delta a \delta)^{*}$ and $a \delta e \delta=(a \delta e \delta)^{+} a \delta$.
All the lemmas 2.5 to 2.9 and the observations therein make the proof of theorem 2.4.

4. THE ISOMORPHISMS

Asibong in [1] established that there is a Vagner - Preston type representation from a type A semigroup S into a type A semigroup T of mappings, where $T=\left\{\alpha_{a} \mid a \in S, \alpha_{a}: S a^{+} \rightarrow S a^{*}\right\}$. It was, thus, shown that that the mapping $\varphi: S \rightarrow T$ with $a \varphi=\alpha_{a}$ is an isomorphism from S onto T. It follows from the general definition given by Howie in [6] that

$$
\operatorname{Ker} \varphi=\varphi o \varphi^{-1}=\{(a, b) \in S \times S: a \varphi=b \varphi\}
$$

$\operatorname{Ker} \varphi$ is obviously an equivalence relation on S. It is not just an equivalence, it is a congruence on S. To see this, let $(a, b),(x, y) \in \operatorname{Ker} \varphi$. This implies that $a \varphi=b \varphi$ and $x \varphi=y \varphi$. Therefore, $a x \varphi=a \varphi x \varphi=$ $b \varphi y \varphi=b y \varphi$. So that $(a x, b y) \in \operatorname{Ker} \varphi$.

We know, from our elementary algebra, that there should be a natural morphism γ (say) from S onto $S / \operatorname{Ker} \varphi$ defined by $a \gamma=a \operatorname{Ker} \varphi,(a \in S)$. Similarly, we have a natural morphism $\vartheta: S \rightarrow S / \delta$ defined $a \vartheta=a \delta,(a \in S)$.

For convenience, let us, for the rest of this section, denote $\operatorname{Ker} \varphi$ by κ. The last paragraph is part of the following theorem:

Theorem $3.1 \quad \delta \subseteq \kappa$. There is a isomorphism π from S / δ onto S / κ whose kernel $-\kappa / \delta$, is a congruence on S / δ such that $(S / \delta) /(\kappa / \delta)$ is isomorphic to S / κ and such that the diagram

commutes.

Proof: $\boldsymbol{S} / \boldsymbol{\delta}$
Suppose $(a, b) \in \delta, \quad a, b \in S$. This implies that for some $e \in E\left(a^{+}\right), \quad f \in E\left(a^{*}\right), g \in E\left(b^{+}\right)$and $h \in E\left(b^{*}\right), \quad b=e a f$ and $a=g b h$.

So that $a \varphi=g b h \varphi=g e a f h \varphi=g \varphi e \varphi a \varphi f \varphi h \varphi=(g e) \varphi \cdot a \varphi \cdot(f h) \varphi=(g e) a(f h) \varphi$.
Now, $g e \in E\left(b^{+}\right) . E\left(a^{+}\right)=E\left(b^{+}\right)\left(a^{+}\right)=E\left(a^{+}\right)\left(b^{+}\right) \subseteq E\left(a^{+}\right)$
and $f h \in E\left(a^{*}\right) \cdot E\left(b^{*}\right)=E\left(a^{*}\right)\left(b^{*}\right)=E\left(b^{*}\right)\left(a^{*}\right) \subseteq E\left(a^{*}\right)$.
Therefore, $a \varphi=(g e) a(f h) \varphi=b \varphi$. Thus, $(a, b) \in \kappa$.
Next,
Define a map $\pi: S / \delta \rightarrow S / \kappa$ by $(a \delta) \pi=a \kappa$ with $a \in S . \pi$ is well defined since

$$
[a \delta=b \delta]
$$

$\Rightarrow[(a, b) \in \delta] \Rightarrow[(a, b) \in \kappa] \Rightarrow[a \kappa=b \kappa] \Rightarrow[(a \delta) \pi=(b \delta) \pi]$.
π is a morphism since $(a \delta b \delta) \pi=(a b \delta) \pi=(a b) \kappa=a \kappa b \kappa=(a \delta) \pi(b \delta) \pi$.
Now, suppose $a \kappa=b \kappa$. This implies that $a \varphi=b \varphi$ and therefore $\alpha_{a}=\alpha_{b}$, which in turn implies that $S a^{+}=S b^{+}, \quad S a=S b$, the domains and ranges of α_{a} and α_{b} respectively. $S a^{+}=S b^{+}$means that $E a^{+}=E b^{+}, S a=S b$ also means that $E a=E b$ and evidently, $E a^{*}=E b^{*}$. Thus, with $a \in E a^{+}$, we have $a \in E b^{+}$. Similarly, $a \in E b^{*}$. So that there is some $g \in E b^{+}$and some $h \in E b^{+}$such that $a=g b h$. In the same vein, $b \in E a^{+}$and $b \in E a^{*}$ and for some $e \in E a^{+}$and $f \in E a^{*}, b=e a f$. Hence, $a \delta=b \delta$. That is, π is one - one.

The definition of π makes it obviously surjective since for all $a \in S$, every $a \kappa$ corresponds to $a \delta$. Thus, π is an isomorphism.

The kernel of π is defined as follows:
$\operatorname{ker} \pi=\pi$ о $\pi^{-1}=\{(a \delta, b \delta) \in S / \delta \times S / \delta:(a \delta) \pi=(b \delta) \pi\}=\{(a \delta, b \delta) \in S / \delta \times S / \delta: a \kappa=b \kappa\}$.
We can therefore denote the kernel of π as κ / δ and then write

$$
\kappa / \delta=\{(a \delta, b \delta) \in S / \delta \times S / \delta:(a, b) \in \kappa\}
$$

κ / δ is clearly an equivalence on S / δ. To show that it is a congruence on S / δ, assume $(a \delta, b \delta),(c \delta, d \delta) \in$ κ / δ. This implies that $(a, b),(c, d) \in \kappa$, and therefore
$a \kappa . c k=b \kappa . d \kappa$. So that $a c \kappa=b d \kappa$. Thence, $(a c, b d) \in \kappa$. This implies that
$(a c \delta, b d \delta)=(a \delta c \delta, b \delta d \delta) \in \kappa / \delta$, with $(a \delta c \delta, b \delta d \delta \in S / \delta)$.
As usual, there is therefore a natural morphism $\xi: S / \delta \rightarrow(S / \delta) /(\kappa / \delta)$ defined by
$(a \delta) \xi=(a \delta)(\kappa / \delta)$ where $a \delta \in S / \delta$.
Now, define the map $\beta:(S / \delta) /(\kappa / \delta) \rightarrow S / \kappa$ by $[(a \delta)(\kappa / \delta)] \beta=a \kappa$.
To show that β is well defined, let us suppose that $a \delta(\kappa / \delta)=b \delta(\kappa / \delta)$.

$$
[a \delta(\kappa / \delta)=b \delta(\kappa / \delta)] \Rightarrow[(a \delta, b \delta) \in \kappa / \delta] \Rightarrow[(a, b) \in \kappa] \Rightarrow[a \kappa=b \kappa]
$$

Having ascertained that β is well defined, we shall now show that it is a morphism.

$$
\begin{aligned}
{[(a \delta)(\kappa / \delta) \cdot(b \delta)(\kappa / \delta)] \beta } & =[a \delta b \delta(\kappa / \delta)] \beta=[a b \delta(\kappa / \delta)] \beta \\
& =a b \kappa=a \kappa b \kappa=[(a \delta)(\kappa / \delta)] \beta[(b \delta)(\kappa / \delta)] \beta
\end{aligned}
$$

Thus, β is a morphism.
Our next goal is to show that β is one - one. And to do that, assume $a \kappa=b \kappa$. So that $(a, b) \in \kappa$, which guarantees that $(a \delta, b \delta) \in \kappa / \delta$. And therefore, $a \delta(\kappa / \delta)=b \delta(\kappa / \delta)$ as required.

By the definition of β, for all $a \in S$, every $a \kappa$ in S / κ has $[(a \delta)(\kappa / \delta)]$ in $(S / \delta) /(\kappa / \delta)$ assigned to it. So, evidently, β is surjective. β is therefore an isomorphism.

Finally, we notice that
(a) $\vartheta \pi=(a \delta) \pi=a \kappa, \quad a \gamma=a \kappa$. Therefore $\vartheta \pi=\gamma$.
$(a \delta) \xi \beta=[(a \delta)(\kappa / \delta)] \beta=a \kappa$. Therefore $\xi \beta=\pi$.
Thus, $\vartheta \xi \beta=\vartheta \pi=\gamma$. Hence the diagram commutes.

5. ACKNOWLEDGEMENT

Thanks to Prof. U. I. Asibong-Ibe of the Dept. of Mathematics, University of Port Harcourt, for his kind and committed supervision.

6. REFERENCES

[1] Asibong-Ibe U : Representation of Type A Monoids. Bull Austral Math Soc. 44(1991) 131 - 138.
[2] Asibong-Ibe U: *-Simple Type A ω-Semigroups. Semigroup Forum 47 (1993) 135-149.
[3] El-Qallali : Quasi - Adeqaute Semigroups. International Center for Theoretical Physics, Trieste Italy (1987).
[4] Fountain J. B: Adequate Semigroups. Proc. Edinburgh Math. Soc. 22 (1979) 113 - 125.
[5] Howie J. M: Fundamentals of Semigroup Theory. Oxford University Press Inc. (1995)
[6] Howie J. M: The Maximum Idempotent - Separating Congruence on an Inverse Semigroup. Glasgow University (1963).
[7] Lawson M. V : The Structure of Type A Semigroups. Quart. J, Math. Oxford (2), 37 (1986), 279 - 298.
[8] Ren X. M., Shum K. P: The Structure of Q^{*}-Inverse Semigroups. Journal of Algebra 325 (2011) 1-17.

