The Properties of Generalized k-Pell like Sequence using Matrices

Kemal Uslu ${ }^{1 *}$, Fatmanur Yildirim 2
${ }^{1}$ Selcuk University, Science Faculty, Department of Mathematics
Konya, Turkey
${ }^{2}$ Selcuk University, Science Faculty, Department of Mathematics
Konya, Turkey
*Corresponding author's email: kuslu [AT] selcuk.edu.tr

Abstract

The Pell sequence has been generalized in many ways. In this study, we define new generalization $\left\{M_{k, n}\right\}$ with initial conditions $M_{k, 0}=4, M_{k, 1}=m+4$, which is generated by the requrrence relation $M_{k, n+1}=k M_{k, n}+M_{k, n-1}$ for $n \geq 1$, where k, m are integer numbers. Then, we obtain some properties related to new generalization of Pell sequence.

Keywords- Pell sequence, recurrence relation

1. INTRODUCTION

The well-known Pell $\left\{P_{n}\right\}$ and Pell-Lucas $\left\{Q_{n}\right\}$ sequences have many interesting properties and their applications to every fields of positive science and art [1-2]. They are defined for $n \geq 2$ with the recurrences $P_{n}=2 P_{n-1}+P_{n-2}$, $\left(P_{0}=0, P_{1}=1\right)$ and $Q_{n}=2 Q_{n-1}+Q_{n-2},\left(Q_{0}=2, Q_{1}=2\right)$ respectively. In the literature, these numbers have been generalized in many ways [1-5]. Falcon and Plaza, in [6], defined the k-Fibonacci sequence $\left\{F_{k, n}\right\}_{n=0}^{\infty}, k \geq 1, n \geq 1$ and k-Lucas sequence $\left\{L_{k, n}\right\}_{n=0}^{\infty}, k \geq 1, n \geq 1$,

$$
F_{k, n+1}=k F_{k, n}+F_{k, n-1}, \quad\left(F_{k, 0}=0, F_{k, 1}=1\right)
$$

and

$$
L_{k, n+1}=k L_{k, n}+L_{k, n-1}, \quad\left(L_{k, 0}=2, L_{k, 1}=k\right)
$$

respectively. Many properties of these numbers were deduced directly from elementary matrix algebra. Furthermore the 3-dimensional k-Fibonacci spirals were studied from a geometric points of view. In [3-4], Taskara N., Uslu K., Gulec H. H., gave the binomial properties Fibonacci and Lucas sequences and obtained some new algebraic results of these numbers. In [2], Horadam showed that some properties involving Pell numbers. Horadam gave Simpson formula

$$
P_{n+1} P_{n-1}-P_{n}^{2}=(-1)^{n}
$$

for the Pell numbers. In [7], Godase A. D. defined generalized k-Fibonacci like sequence using matrices, studied some properties of these numbers.

2. THE GENERALIZED k-PELL LIKE SEQUENCE

By using [7], we defined a new generalization of the k-Pell sequences and gave few terms of this sequence.

Definition 2.1. For any integer number $k \geq 1$ and $m \geq 0$ the generalized k-Pell like sequence $M_{k, n}$ is defined by

$$
M_{k, n+1}=2 M_{k, n}+k M_{k, n-1},(n \geq 1),\left(M_{k, 0}=4, M_{k, 1}=m+4\right)
$$

Characteristics equation of the initial recurrence relation is $r^{2}-2 r-k=0$, and characteristics roots are

$$
r_{1}=1+\sqrt{1+k}, \quad r_{2}=1-\sqrt{1+k}
$$

Characteristics roots verify the properties

$$
r_{1}-r_{2}=2 \sqrt{1+k}, r_{1}+r_{2}=2, \quad r_{1} r_{2}=-k
$$

It is clear from the definition of the generalized k-Pell like sequence it satisfy

$$
\begin{equation*}
M_{k, n}=m P_{k, n}+Q_{k, n},(n \geq 0) \tag{2.1}
\end{equation*}
$$

where $P_{k, n}$ and $Q_{k, n}$ are k-Pell and k-Pell-Lucas numbers respectively. $P_{k, n}$ and $Q_{k, n}$ are defined by the solutions of the following discrete equalities

$$
\begin{gathered}
P_{k, n+1}=2 P_{k, n}+k P_{k, n-1},(n \geq 1) \\
Q_{k, n+1}=2 Q_{k, n}+k Q_{k, n-1},(n \geq 1)
\end{gathered}
$$

with initial conditions $P_{k, 0}=0, P_{k, 1}=1$ and $Q_{k, 0}=2, Q_{k, 1}=2$, respectively.

First few terms of the generalized k-Pell like sequences are:

$$
\begin{aligned}
& M_{k, 0}=4, \\
& M_{k, 1}=m+4 \\
& M_{k, 2}=4 k+2 m+8 \\
& M_{k, 3}=(m+12) k+4 m+16, \\
& M_{k, 4}=4 k^{2}+(4 m+32) k+8 m+32, \\
& M_{k, 5}=(20+m) k^{2}+(12 m+80) k+16 m+64, \\
& M_{k, 6}=4 k^{3}+(6 m+72) k^{2}+(32 m+192) k+32 m+128
\end{aligned}
$$

3. PROPERTIES OF GENERALIZED k-PELL LIKE SEQUENCE BY MATRIX METHODS

In this section we give our obtained results related to k-Pell Like sequence.

Theorem 3.1. For the generalized k-Pell like sequence $M_{k, n}$, the follows equality holds

$$
\left(\begin{array}{cc}
M_{k, n+1} & M_{k, n} \tag{3.1}\\
M_{k, n} & M_{k, n-1}
\end{array}\right)=L^{n}\left(\begin{array}{cc}
m+4 & 4 \\
4 & (m-4) / k
\end{array}\right), \quad \text { where } L=\left(\begin{array}{cc}
2 & 1 \\
k & 0
\end{array}\right)
$$

Proof: Let us use the principle of mathematical induction on n. For $n=1$, it is easy to see that the equality holds

$$
\left(\begin{array}{ll}
M_{k, 2} & M_{k, 1} \\
M_{k, 1} & M_{k, 0}
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
k & 0
\end{array}\right)\left(\begin{array}{cc}
m+4 & 4 \\
4 & (m-4) / k
\end{array}\right)=\left(\begin{array}{cc}
4 k+2 m+8 & m+4 \\
m+4 & 4
\end{array}\right)
$$

Now, assume that result is true for $n-1$. Therefore we have

$$
\left(\begin{array}{cc}
M_{k, n} & M_{k, n-1} \\
M_{k, n-1} & M_{k, n-2}
\end{array}\right)=L^{n-1}\left(\begin{array}{cc}
m+4 & 4 \\
4 & (m-4) / k
\end{array}\right)
$$

Now, if we multiply the matrix L the last equation, then we can write the following equation

$$
\begin{aligned}
\left(\begin{array}{cc}
M_{k, n} & M_{k, n-1} \\
M_{k, n-1} & M_{k, n-2}
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
k & 0
\end{array}\right) & =L^{n-1}\left(\begin{array}{cc}
m+4 & 4 \\
4 & (m-4) / k
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
k & 0
\end{array}\right) \\
\left(\begin{array}{cc}
M_{k, n+1} & M_{k, n} \\
M_{k, n} & M_{k, n-1}
\end{array}\right) & =L^{n}\left(\begin{array}{cc}
m+4 & 4 \\
4 & (m-4) / k
\end{array}\right)
\end{aligned}
$$

Theorem 3.2. (Simpson's identity for negative n)

$$
M_{k,-n+1} M_{k,-n-1}-M_{k,-n}^{2}=\left(\frac{m^{2}-16 k-16}{k}\right)
$$

Proof: If we get $-n$ instead of n in matrix equation 3.1., then we have

$$
\left(\begin{array}{cc}
M_{k,-n+1} & M_{k,-n} \\
M_{k,-n} & M_{k,-n-1}
\end{array}\right)=L^{-n}\left(\begin{array}{cc}
m+4 & 4 \\
4 & (m-4) / k
\end{array}\right)
$$

$$
L^{-n}=\left(\begin{array}{cc}
P_{k, n+1} & k P_{k, n} \\
P_{k, n} & k P_{k, n-1}
\end{array}\right)^{-n}=\frac{1}{k^{n}\left(P_{k, n+1} P_{k, n-1}-P_{k, n}^{2}\right)^{n}}\left(\begin{array}{cc}
k P_{k, n-1} & -k P_{k, n} \\
-P_{k, n} & P_{k, n+1}
\end{array}\right)=\frac{1}{(-1)^{n} k^{n}}\left(\begin{array}{cc}
k P_{k, n-1} & -k P_{k, n} \\
-P_{k, n} & P_{k, n+1}
\end{array}\right)
$$

From the last equations, we can write

$$
\left(\begin{array}{cc}
M_{k,-n+1} & M_{k,-n} \\
M_{k,-n} & M_{k,-n-1}
\end{array}\right)=\frac{1}{(-1)^{n} k^{n}}\left(\begin{array}{cc}
k P_{k, n-1} & -k P_{k, n} \\
-P_{k, n} & P_{k, n+1}
\end{array}\right)\left(\begin{array}{cc}
m+4 & 4 \\
4 & (m-4) / k
\end{array}\right) .
$$

If we calculate the determinant of above matrix equation, we have

$$
\begin{gathered}
M_{k,-n+1} M_{k,-n-1}-M_{k,-n}^{2}=\frac{1}{(-1)^{n} k^{n}}\left[P_{k, n+1} P_{k, n-1}-P_{k, n}^{2}\right]((m+4)(m-4)-16 k) \\
M_{k,-n+1} M_{k,-n-1}-M_{k,-n}^{2}=\frac{1}{(-1)^{n} k^{n}}\left[k^{n-1}(-1)^{n}\right]\left(m^{2}-16 k-16\right)=\frac{\left(m^{2}-16 k-16\right)}{k} .
\end{gathered}
$$

Theorem 3.3. For arbitrary integer $n, r \geq 0$, we have following equalities

$$
\begin{aligned}
& M_{k, n-r+1}=(-1)^{r}(k)^{1-r}\left[M_{k, n+1} P_{k, r-1}-M_{k, n} P_{k, r}\right], \\
& M_{k, n-r}=(-1)^{r}(k)^{1-r}\left[M_{k, n} P_{k, r-1}-M_{k, n-1} P_{k, r}\right], \\
& M_{k, n-r-1}=(-1)^{r}(k)^{-r}\left[M_{k, n-1} P_{k, r+1}-M_{k, n} P_{k, r}\right] .
\end{aligned}
$$

Proof: It is obvious

$$
L^{n-r}=\frac{1}{(-1)^{r} k^{r}}\left(\begin{array}{cc}
k P_{k, r-1} & -k P_{k, r} \\
-P_{k, r} & P_{k, r+1}
\end{array}\right) L^{n}
$$

and

$$
\left(\begin{array}{cc}
M_{k, n-r+1} & M_{k, n-r} \tag{3.3.1}\\
M_{k, n-r} & M_{k, n-r-1}
\end{array}\right)=L^{n-r}\left(\begin{array}{cc}
m+4 & 4 \\
4 & (m-4) / k
\end{array}\right) .
$$

Otherwise we can write,

$$
L^{n-r}\left(\begin{array}{cc}
m+4 & 4 \tag{3.3.2}\\
4 & (m-4) / k
\end{array}\right)=\frac{1}{(-1)^{r} k^{r}} L^{n}\left(\begin{array}{cc}
k P_{k, r-1} & -k P_{k, r} \\
-P_{k, r} & P_{k, r+1}
\end{array}\right)\left(\begin{array}{cc}
m+4 & 4 \\
4 & (m-4) / k
\end{array}\right)
$$

From the (3.3.1) and (3.3.2), we have

$$
\left(\begin{array}{cc}
M_{k, n-r+1} & M_{k, n-r} \\
M_{k, n-r} & M_{k, n-r-1}
\end{array}\right)=\frac{1}{(-1)^{r} k^{r}}\left(\begin{array}{cc}
k P_{k, r-1} & -k P_{k, r} \\
-P_{k, r} & P_{k, r+1}
\end{array}\right)\left(\begin{array}{cc}
M_{k, n+1} & M_{k, n} \\
M_{k, n} & M_{k, n-1}
\end{array}\right) .
$$

Then we have the following results from the above matrix equality

$$
\begin{aligned}
& M_{k, n-r+1}=(-1)^{r}(k)^{1-r}\left[M_{k, n+1} P_{k, r-1}-M_{k, n} P_{k, r}\right], \\
& M_{k, n-r}=(-1)^{r}(k)^{1-r}\left[M_{k, n} P_{k, r-1}-M_{k, n-1} P_{k, r}\right], \\
& M_{k, n-r-1}=(-1)^{r}(k)^{-r}\left[M_{k, n-1} P_{k, r+1}-M_{k, n} P_{k, r}\right] .
\end{aligned}
$$

4. REFERENCES

[1] Koshy T., "Fibonacci and Lucas numbers with Applications", John Wiley and Sons Inc., NY, 2001.
[2] Horadam A. F., Mahon J. M., "Pell and Pell-Lucas Polynomials", The Fibonacci Quarterly, 23, 7-20, 1985.
[3] Gulec H. H., Taskara N., "On the properties of Fibonacci numbers with binomial coefficients", Int. J. Contemp. Math. Sciences, vol 4, no 25, 1251-1256, 2009.
[4] Taskara N., Uslu K., Gulec H. H., "On the properties of Lucas numbers with binomial coefficients", Applied Mathematics Letter, 23, 68-72, 2010.
[5] Nalli A. Haukkanen P., "On the generalized Fionacci and Lucas polynomials", Chaos, Solutions \& Fractals, 42, 3179-3186, 2009.
[6] Falcon S., Plaza A., "On the k-Fibonacci sequences and polynomials and their derivates", Chaos, Solutions \& Fractals, 39 (3), 1005-1019, 2009.
[7] Godase A. D., Dhakne M. B., "On the properties of generalized k-Fibonacci like sequence using matrices", Indian Journal, Journal in Number Theory, 01, 2014.

