A Note on $\widetilde{\mathcal{J}}_{E}$ - Simple Left Restriction ω –Semigroup

R. U. Ndubuisi^{*} and O. G. Udoaka

Department of Mathematics & Statistics, University of Port Harcourt. Port Harcourt, Nigeria.

*Corresponding author's email: u_ndubuisi [AT] yahoo.com

ABSTRACT---- In this paper, we study the \tilde{J}_E -simple left restriction ω - semigroup using the Bruck-Reilly extension $BR(M, \theta)$ of a monoid M determined by a morphism θ . In particular, we characterize the Green's \sim -relations in $BR(M, \theta)$. Consequently, we prove that $BR(M, \theta)$ is a \tilde{J}_E -simple left restriction ω - semigroup.

Keywords: $\tilde{\mathcal{J}}_{E}$ -simple semigroup, left restriction, Green's ~ - relations, ω - semigroup

1. INTRODUCTION

As noted by Howie [6], the Bruck-Reilly extension BR(M, θ) of a monoid M determined by a morphism θ completely defines a bisimple inverse ω -semigroup. Earlier results by Asibong-Ibe [1] described *-bisimple ample ω - semigroup as a kind of Bruck-Reilly extension over a cancellative monoid. Asibong-Ibe [2] proved that a similar result in [1] holds for *-simple ample ω - semigroup. Further investigation by Yu Shang and Limin Wang [7] also described *-bisimple ample I-semigroup as a generalized Bruck-Reilly extension of a monoid determined by a morphism.

Gould [5] introduced a wider class of inverse semigroups which stems from the left ample semigroup of Fountain [3] via the route of replacing the relations \mathcal{R}^* in a semigroup *S* by those of $\widetilde{\mathcal{R}}_E$ (making reference to a specific set of idempotent *E*, which may not be the whole of the idempotents E(S)). This class of semigroup is known as left restriction semigroup. Now since BR(M, θ) defines the *- bisimple ample ω -semigroup and *-simple ample ω -semigroup, it is natural to ask whether BR(M, θ) also defines the left restriction semigroup. In this paper, we focus on showing that BR(M, θ) is a $\widetilde{\mathcal{J}}_E$ -simple left restriction ω - semigroup.

2. PRELIMINARIES

In this section we recall some definitions as well as some known results which will be useful in the sequel.

Definition 2.1. Let *S* be a semigroup and let $E \subseteq E(S)$ (E is the distinguished semilattice of idempotents). Let *a*, *b* \in *S*, we have following relations on *S*

 $\begin{array}{l} a \, \widetilde{\mathcal{R}}_{E} b \, \Leftrightarrow \, \forall \, e \, \epsilon \, E, \ ea = a \, \Leftrightarrow eb = b \\ a \widetilde{\mathcal{L}}_{E} b \, \Leftrightarrow \, \forall \, e \, \epsilon \, E, \ ae = a \, \Leftrightarrow be = b \\ a \, \widetilde{\mathcal{D}}_{E} b \, \Leftrightarrow \, \exists \, c \, \epsilon \, S \text{ such that } a \, \widetilde{\mathcal{L}}_{E} c \, \widetilde{\mathcal{R}}_{E} b \text{ that is } \widetilde{\mathcal{D}}_{E} = \widetilde{\mathcal{L}}_{E} \, \lor \, \widetilde{\mathcal{R}}_{E}. \end{array}$

Definition 2.2. Let *S* be a semigroup. Then *S* is said to be left (right) ample if

i) every element $a \in S$ is $\mathcal{R}^*(\mathcal{L}^*)$ – related to an idempotent, denoted by $a^{\dagger}(a^*)$

ii) for all $a \in S$ and all $e \in E(S)$,

$$ae = (ae)^{\dagger}a$$
 ($ea = a(ea)^{*}$).

Definition 2.3. Let S be a semigroup and let $E \subseteq E(S)$. Then S is said to be left (right) restriction semigroup if i) E is a semilattice

ii) every element $a \in S$ is $\widetilde{\mathcal{R}}_{E}(\widetilde{\mathcal{L}}_{E})$ -related to an idempotent of E, denoted by $a^{\dagger}(a^{*})$

iii) the relation $\widetilde{\mathcal{R}}_{E}(\widetilde{\mathcal{L}}_{E})$ is a left (right) congruence

iv) the left (right) ample condition holds:

 $ae = (ae)^{\dagger}a$ ($ea = a(ea)^{*}$).

Definition 2.4. Let *S* be a left (right) restriction semigroup. A left (right) ideal *I* of *S* is said to be a ~ - left (right) ideal if it is the union of $\widetilde{\mathcal{R}}_E(\widetilde{\mathcal{L}}_E)$ -classes, that is, if $a \in I$ then $\widetilde{\mathcal{R}}_a(\widetilde{\mathcal{L}}_a) \subseteq I$. The smallest ~ - left (right) ideal containing *a* which is the union of $\widetilde{\mathcal{D}}_E$ -classes is denoted by $\widetilde{J}(a)$. We define the relation $\widetilde{\mathcal{J}}_E$ on *S* by $a \widetilde{\mathcal{J}}_E b \Leftrightarrow \widetilde{J}(a) = \widetilde{J}(b)$. A left (right) restriction semigroup *S* is said to be $\widetilde{\mathcal{J}}_E$ -simple if $\widetilde{\mathcal{J}}_E$ is the universal relation.

Lemma 2.5 [4]. Let S be a semigroup and $a, b \in S$. Then $b \in \widetilde{J}(b)$ if and only if there are elements $a_0, a_1, ..., a_n \in S, x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in S^1$ such that $a = a_0, b = a_n$ and $a_i \widetilde{\mathcal{D}}_E x_i a_{i-1} y_i$, for i = 1, 2, ..., n.

Lemma 2.6 [3]. Let *S* be a semigroup and *e* be an idempotent in *S*. Then the following are equivalent for $a \in S$. i) $a \mathcal{R}^* e$

ii) ea = a, and for all $x, y \in S^1$, xa = ya implies xe = ye.

Lemma 2.7 [5]. Let S be a semigroup and $E \subseteq E(S)$, let $a \in S, e \in E$. Then the following conditions are equivalent:

i) $a \tilde{\mathcal{R}}_E e$ ii) ea = a and for all $f \in E, fa = a \Rightarrow fe = e$.

In a similar way to the *-relations, the \sim -relations are also related to the Green's relations as follows:

Lemma 2.8 [5]. In any semigroup S we have $\mathcal{R} \subseteq \mathcal{R}^* \subseteq \tilde{\mathcal{R}}_E$. If S is regular, and E = E(S) then $\tilde{\mathcal{R}}_E \subseteq \mathcal{R}$ and so $\tilde{\mathcal{R}}_E \subseteq \mathcal{R}^*$.

Dually we have $\mathcal{L} \subseteq \mathcal{L}^* \subseteq \tilde{\mathcal{L}}_E$, and if S is regular, and E = E(S) then $\tilde{\mathcal{L}}_E \subseteq \mathcal{L}$ and so $\tilde{\mathcal{L}}_E \subseteq \mathcal{L}^*$.

3. BRUCK-REILLY EXTENSION OF A MONOID

Let *M* be a monoid with identity *e* and $\theta : M \to M$ be a morphism. Let θ^0 be the identity map on *M* and $S = BR(M, \theta)$ consist of set $S = \mathbb{N}^0 \times M \times \mathbb{N}^0$ (where \mathbb{N}^0 denote the set of non-negative integers) with multiplication defined by the rule $(m, x, n)(p, y, q) = (m - n + t, x\theta^{t-n}y\theta^{t-p}, q - p + t)$

where
$$t = \max\{n, p\}$$
, for (m, x, n) , $(p, y, q) \in S$.

This construction is a generalization of constructions by Bruck and Reilly, thus $BR(M, \theta)$ is known as the Bruck-Reilly extension of a monoid determined by morphism.

Proposition 3.1 [6]. $BR(M, \theta)$ is a semigroup.

It is also important to note that the idempotents of $BR(M, \theta)$ are of the form (m, e, m) where $m \in \mathbb{N}^0$ and $e \in E(M)$. **Proposition 3.2** [6]. $BR(M, \theta)$ is regular if and only if M is regular. From Proposition 3.2 [6], we know that $BR(M, \theta)$ is an inverse semigroup.

Proposition 3.3 [6]. Let $(m, x, n), (p, y, q) \in BR(M, \theta)$. Then

- i) $(m, x, n) \mathcal{R}(p, y, q) \Leftrightarrow m = p$
- ii) $(m, x, n)\mathcal{L}(p, y, q) \Leftrightarrow n = q$

Asibong-Ibe [1] considered the *-bisimple ample ω -semigroup and proved that they are isomorphic to certain generalized Bruck-Reilly extension $BR^*(M, \theta)$ of a cancellative monoid M where θ is a morphism. Below are some of his results.

Proposition 3.4 [1]. Let *M* be a cancellative monoid with identity *e* and $\theta : M \to M$ be a morphism. Let (0, e, 0) be the identity of $BR^*(M, \theta)$. Then for $(m, x, n), (p, y, q) \in BR^*(M, \theta)$

i) $(m, x, n) \mathcal{R}^*(p, y, q) \Leftrightarrow m = p$

ii) $(m, x, n) \mathcal{L}^*(p, y, q) \Leftrightarrow n = q$

Proposition 3.5 [1]. $BR^*(M, \theta)$ is left ample.

Yu Shang and Limin Wang [7] considered a similar construction of the Bruck-Reilly extension of a monoid. They used this construction to give a structure theorem for *-bisimple ample I-semigroup. Below are some of their results.

Construction 3.6. [7]. Let *M* be a monoid with identity e and $\theta : M \to M$ be a morphism. The set $S = GBR^*(M, \theta) = I \times M \times I$ (where *I* denotes a non-empty set) with multiplication defined by the rule

 $(m, x, n)(P, y, q) = \begin{cases} (m, x. f_{n-p, p}^{-1}. y \theta^{n-p}. f_{n-p, q}, q-p+n) & \text{if } n \ge p \\ (m-n+p, f_{p-n, m}^{-1}. x \theta^{p-n}. f_{p-n, n}. y, q) & \text{if } n \le p \end{cases}$

(where θ^0 is the identity map on M, $f_{0,n} = e$ is the identity of M) forms a semigroup. This semigroup is called the generalized Bruck-Reilly *-extension of M determined by θ .

Remark 3.7. The idempotents of $GBR^*(M, \theta)$ are of the form (m, e, m), where $m \in \mathbb{N}^0$.

Lemma 3.8 [7]. Let $(m, x, n), (p, y, q) \in GBR^*(M, \theta)$. Then i) $(m, x, n) \mathcal{L}^*(p, y, q) \Leftrightarrow n = q$ ii) $(m, x, n) \mathcal{R}^*(p, y, q) \Leftrightarrow m = p$

4. \tilde{J}_{E} - SIMPLE LEFT RESTRICTION ω -SEMIGROUP

In this section, we show that $BR(M, \theta)$ is a \tilde{J}_{E^-} simple left restriction ω -semigroup. But first, we need the definition of a strong semilattice of monoids, which is taken from [6].

Definition 4.1. Let *M* be a semigroup which is the disjoint union of monoids M_{α} , where the indices α form a semilattice *Y*. Suppose that for all $\alpha, \beta, \gamma, M_{\alpha}M_{\beta} \subseteq M_{\alpha\beta}$. Then *M* is called a semilattice *Y* of monoids M_{α} where $\alpha \in Y$. Furthermore, consider $\alpha, \beta \in Y$ where $\alpha \geq \beta$. Let $\varphi_{\alpha,\beta} : M_{\alpha} \to M_{\beta}$ be a monoid morphism such that :

i) $\varphi_{\alpha,\alpha} = id_{M_{\alpha}}$ for all $\alpha \in Y$

ii) for $\alpha, \beta, \gamma \in Y$, where $\alpha \ge \beta \ge \gamma$, $\varphi_{\alpha,\beta}\varphi_{\beta,\gamma} = \varphi_{\alpha,\gamma}$.

Then $\varphi_{\alpha,\beta}$ is called a connecting morphism. Furthermore, if for all $x, y \in M$ where $x \in M_{\alpha}$ and $y \in M_{\beta}$ we have that

$$x \cdot y = (x\varphi_{\alpha,\alpha\beta})(y\varphi_{\beta,\alpha\beta})$$

Then $M = [Y, M_{\alpha}; \varphi_{\alpha,\beta}]$ is called a strong semilattice Y of monoids M_{α} with connecting morphisms $\varphi_{\alpha,\beta}$.

It can be easily shown that (M, .) is a semigroup with identity e_0 and the multiplication on M extends the multiplication in each M_{α} .

Proposition 4.2. Let $M = \bigcup_{\alpha=0}^{d-1} M_{\alpha}$ be a strong semilattice of the monoids M_{α} where $d \in \mathbb{N}^0$, the indices α form a chain $0 > 1 > \cdots > d - 1$ and the connecting morphisms are all monoid morphisms. Let $\theta : M \to M_0$ be a monoid morphism and $E = \{ (m, e_{\alpha}, m) : m \in \mathbb{N}^0, 0 \le \alpha \le d - 1 \}$ where e_{α} is the identity of M_{α} . Then for any $(m, x, n), (p, y, q) \in BR(M, \theta)$ we have

i) $(m, x, n) \widetilde{\mathcal{R}}_E(p, y, q) \Leftrightarrow m = p$, and $x, y \in M_\alpha$. ii) $(m, x, n) \widetilde{\mathcal{L}}_{E}(p, y, q) \Leftrightarrow n = q$, and $x, y \in M_{\alpha}$. iii) $(m, x, n) \widetilde{\mathcal{D}}_E(p, y, q) \Leftrightarrow x, y \in M_\alpha$, so $BR(\widetilde{M}, \theta)$ has $d \widetilde{\mathcal{D}}_E$ - classes. iv) $(m, x, n) \tilde{\mathcal{J}}_E(p, y, q)$. That is, $\tilde{\mathcal{J}}_E$ is the universal relation. Proof. i) \Rightarrow Let $(m, x, n) \widetilde{\mathcal{R}}_E(p, y, q)$, where $x \in M_\alpha$ and $y \in M_\beta$ for some α and β . Then for $(m, e_\alpha, m) \in E$ $(m, e_{\alpha}, m)(m, x, n) = (m - m + t_1, e_{\alpha}\theta^{t_1 - m}x\theta^{t_1 - m}, n - m + t_1) = (m, x, n)$ where $t_1 = \max(m, m) = m$ $(m, e_{\alpha}, m)(p, y, q) = (m - m + t_2, e_{\alpha}\theta^{t_2 - m}y\theta^{t_2 - p}, q - p + t_2) = (p, y, q)$ where $t_2 = \max(m, p)$ If $m \le p$, this gives $(t_2, e_\alpha \theta^{t_2-m} y \theta^{t_2-p}, q-p+t_2) = (p, y, q)$ Comparing the first coordinates gives $t_2 = p$ Similarly if $p \le m$, this gives $(t_2, e_\alpha y \theta^{t_2 - p}, q - p + t_2) = (p, y, q)$ Comparing the first coordinates gives $t_2 = m = p$ So we have that $m = p \Longrightarrow e_{\alpha} \theta^{t_2 - m} = e_{\alpha}$. We know that $e_{\alpha} \in M_{\alpha}$, $y \in M_{\beta}$, so $e_{\alpha}y \in M_{\max\{\alpha,\beta\}} \Longrightarrow \max(\alpha,\beta) = \beta$, that is $e_{\beta}x = x \Longrightarrow \beta \le \alpha$. Thus m = p and $\alpha = p$ β. $\leftarrow \text{ Let } m = p, x, y \in M_{\alpha} \text{ and } (l, e_{\beta}, l) \in E \text{ be such that}$ $(l, e_{\beta}, l)(m, x, n) = (l - l + t_3, e_{\beta} \theta^{t_3 - l} x \theta^{t_3 - m}, n - m + t_3) = (m, x, n)$ where $t_3 = max (l, m)$ Then necessarily $l \leq m$ and $\beta \leq \alpha$. $(l, e_{\beta}, l)(m, y, q) = (m, e_{\beta} \theta^{m-l} y, q) = (m, y, q)$ Similarly, it is easy to see that for $(k, e_{\beta}, k) \in E$, we have $(k, e_{\beta}, k)(p, y, q) = (p, y, q),$ $(k,e_{\beta},k)(p,x,n) = (p,x,n).$ Thus $(m, x, n) \widetilde{\mathcal{R}}_E(p, y, q)$. ii) The proof is similar to i). iii) \Rightarrow Let $(m, x, n) \mathcal{D}_E(p, y, q)$. Then there exists an element $(m, x, q) \in BR(M, \theta)$ such that $(m, x, n) \widetilde{\mathcal{R}}_{E}(m, z, q) \widetilde{\mathcal{L}}_{E}(p, y, q)$ Clearly, it follows that $x, y, z \in M_{\alpha}$ for some α . $\leftarrow \text{ Let } x, y \in M_{\alpha}, \text{ then clearly we have}$ $(m, x, n) \widetilde{\mathcal{R}}_{E}(m, x, q) \widetilde{\mathcal{L}}_{E}(p, y, q)$ Thus $(m, x, n) \widetilde{\mathcal{D}}_E(p, y, q)$. iv) Let (m, x, n), $(p, y, q) \in BR(M, \theta)$ where $x \in M_{\alpha}$ and $y \in M_{\beta}$. Then we have $(p, e_{\beta}, m+1)(m, x, n) = (p - (m+1) + t, e_{\beta}\theta^{t-m-1}x\theta^{t-m}, n - m + t)$ $= (p, e_{\beta}(x\theta), n+1)$ where $t = \max(m + 1, m) = m + 1$. Obviously $e_{\beta}(x\theta) \in M_{\beta}$. Then $(p, e_{\beta}(x\theta), n+1) \widetilde{\mathcal{D}}_{E}(p, y, q)$ In the same way $(m, e_{\alpha}, p+1)(p, y, q) \widetilde{\mathcal{D}}_{E}(m, x, n)$. Thus $(m, x, n) \tilde{\mathcal{J}}_E(p, y, q)$. It now follows from Lemma 2.5[4] that $BR(M, \theta)$ is $\tilde{\mathcal{J}}_E$ -simple. **Proposition 4.3.** $BR(M, \theta)$ is left restriction

Proof. We have to check that the conditions of Definition 2.3 hold. First we show that the elements of *E* commute. So for $m, n \in \mathbb{N}^0$, we have $(m, e_\alpha, m)(n, e_\beta, n) = (m - m + t, e_\alpha \theta^{t-m} e_\beta \theta^{t-n}, n - n + t)$

 $=(t,e_{\alpha}\theta^{t-m}e_{\beta}\theta^{t-n},t)=(t,e_{\alpha}\theta^{t-n}e_{\beta}\theta^{t-m},t)$ $= (n, e_{\beta}, n)(m, e_{\alpha}, m)$ where $t = \max(m, n)$. To show that $(m, x, n) \widetilde{\mathcal{R}}_E(m, e_\alpha, m)$, we have $(m, e_{\alpha}, m)(m, x, n) = (m - m + t_1, e_{\alpha} \theta^{t_1 - m} x \theta^{t_1 - m}, n - m + t_1)$ = $(t_1, e_{\alpha} \theta^0 x \theta^0, n) = (m, x, n)$ where $t_1 = \max(m, m) = m$ For $(p, e_\beta, p) \in E$, $(p, e_{\beta}, p)(m, x, n) = (m, x, n) \Longrightarrow (p - p + t_2, e_{\beta}\theta^{t_2 - p}x\theta^{t_2 - m}, n - m + t_2)$ $= (t_2, x\theta^{t_2-m}, n-m+t_2) = (m, x, n), \quad t_2 = \max(p, m)$ $\implies t_2 = m$, $\Rightarrow (p, e_{\beta}, p)(m, e_{\alpha}, m) = (m, e_{\alpha}, m)$ So $(m, x, n) \widetilde{\mathcal{R}}_{E}(m, e, m)$ and we let $(m, x, n)^{\dagger} = (m, e_{\alpha}, m)$. To show that $\widetilde{\mathcal{R}}_{E}$ is a left congruence, let $(m, x, n), (p, y, q) \in BR(M, \theta)$ $(m, x, n) \widetilde{\mathcal{R}}_E(p, y, q) \Leftrightarrow (m, x, n)^{\dagger} = (p, y, q)^{\dagger}$ $\Leftrightarrow (m, e_{\alpha}, m) = (p, e_{\beta}, p)$ $\Leftrightarrow m = n$ So $(m, x, n) \widetilde{\mathcal{R}}_E(p, y, q) \Longrightarrow m = p$ $\Rightarrow \max(z,m) = \max(z,p)$, for $z \in \mathbb{N}^0$ \Rightarrow k - z + max(z, m) = k - z + max(z, p), for k, z $\in \mathbb{N}^0$ $\Rightarrow ((k,c,z)(m,x,n))^{\dagger} = ((k,c,z)(p,y,q))^{\dagger}$ $\Rightarrow (k, c, z)(m, x, n) \widetilde{\mathcal{R}}_{E}(k, c, z)(p, y, q)$ for any $(k, c, z) \in BR(M, \theta)$. Thus $\widetilde{\mathcal{R}}_E$ is a left congruence.

By Proposition 3.5[1], the left ample condition hold and so $BR(M, \theta)$ is left restriction.

Let $E = \{f_{\alpha} : \alpha \in \mathbb{N}^0\}$ be the distinguished semilattice of idempotents, where $f_{\alpha} \leq f_{\beta} \iff \alpha \geq \beta$ for all $\alpha, \beta \in \mathbb{N}^0$. Then *E* is called C_{ω} , that is, C_{ω} is a descending chain

 $f_0 > f_1 > f_2 > \cdots$

If S is a left (right) restriction with distinguished semilattice of idempotents E, then S is said to be an ω -semigroup if E is isomorphic to C_{ω} .

Proposition 4.4. $BR(M, \theta)$ is an ω -semigroup

Proof. Let $(m, e_{\alpha}, m), (n, e_{\beta}, n) \in E$ where m > n. Then

 $(m, e_{\alpha}, m)(n, e_{\beta}, n) = (m, e_{\alpha}(e_{\beta}\theta^{m-n}), m) = (m, e_{\alpha}, m)$

since $(e_{\beta}\theta^{m-n})$ is the identity of M, so we have $(m, e_{\alpha}, m) < (n, e_{\beta}, n)$. Also if m = n and $\alpha \ge \beta$, then we have $(m, e_{\alpha}, m)(m, e_{\beta}, m) = (m, e_{\alpha}e_{\beta}, m) = (m, e_{\alpha}, m)$

So that $(m, e_{\alpha}, m) \ge (m, e_{\beta}, m) \Leftrightarrow m < n$, or if m = n and $\alpha \le \beta$. So *E* is the chain

 $\begin{array}{c} (0,e_0,0) > (0,e_1,0) > \cdots > (0,e_{d-1},0) \\ > (1,e_0,1) > (1,e_1,1) > \cdots > (1,e_{d-1},1) \\ > (2,e_0,2) > (2,e_1,2) > \cdots > (2,e_{d-1},2) \end{array}$

Thus $BR(M, \theta)$ is a $\tilde{\mathcal{J}}_E$ -simple left restriction ω -semigroup.

Hence, we get the following conclusion:

Theorem 4.5. Let $M = \bigcup_{\alpha=0}^{d-1} M_{\alpha}$ be a strong semilattice of the monoids M_{α} where $d \in \mathbb{N}^0$, the indices α form a chain $0 > 1 > \cdots > d - 1$ and the connecting morphisms are all monoid morphisms. Let $\theta : M \to M_0$ be a monoid morphism and $E = \{(m, e_{\alpha}, m) : m \in \mathbb{N}^0, 0 \le \alpha \le d - 1\}$ where e_{α} is the identity of M_{α} . Then $BR(M, \theta)$ is a $\tilde{\mathcal{J}}_E$ -simple left restriction ω -semigroup.

5. REFERENCES

- [1] Asibong-Ibe U. *-Bisimple type A ω -semigroups 1, Semigroup Forum. 31(1985), 99-117.
- [2] Asibong-Ibe U. *-Simple type A ω -semigroups , Semigroup Forum. 47(1993), 135-149.
- [3] Fountain J.B. Adequate semigroups. Proc. London. Math. Soc 44(1982), 103-129
- [4] Fountain, J.B, Abundant semigroups, Proc. London.Math.Soc., (3) 44 (1982), 103-129.
- [5] Gould. V, Restriction semigroups, NBSAN, University of York, (2011), 1-26.
- [6] Howie J.M. Fundamentals of semigroup theory. Oxford University press Inc USA (1995).
- [7] Yu Shang and Limin Wang. *-Bisimple type A I-semigroup. Southeast Asian Bulletin of Math. (2012), 535-545.