A Note on $\widetilde{\mathcal{J}}_{E}$ - Simple Left Restriction $\boldsymbol{\omega}$-Semigroup

R. U. Ndubuisi ${ }^{*}$ and O. G. Udoaka
Department of Mathematics \& Statistics, University of Port Harcourt. Port Harcourt, Nigeria.
*Corresponding author's email: u_ndubuisi [AT] yahoo.com

Abstract

In this paper, we study the $\widetilde{\mathcal{J}}_{E}$-simple left restriction ω - semigroup using the Bruck-Reilly extension $B R(M, \theta)$ of a monoid M determined by a morphism θ. In particular, we characterize the Green's \sim-relations in $B R(M, \theta)$. Consequently, we prove that $B R(M, \theta)$ is a $\widetilde{\mathcal{J}}_{E}$-simple left restriction ω-semigroup.

Keywords: $\widetilde{\mathcal{J}}_{\mathrm{E}}$-simple semigroup, left restriction, Green's \sim - relations, ω - semigroup

1. INTRODUCTION

As noted by Howie [6], the Bruck-Reilly extension $B R(M, \theta)$ of a monoid M determined by a morphism θ completely defines a bisimple inverse ω-semigroup. Earlier results by Asibong-Ibe [1] described $*$-bisimple ample ω-semigroup as a kind of Bruck-Reilly extension over a cancellative monoid. Asibong-Ibe [2] proved that a similar result in [1] holds for *simple ample ω-semigroup. Further investigation by Yu Shang and Limin Wang [7] also described *-bisimple ample Isemigroup as a generalized Bruck-Reilly extension of a monoid determined by a morphism.

Gould [5] introduced a wider class of inverse semigroups which stems from the left ample semigroup of Fountain [3] via the route of replacing the relations \mathcal{R}^{*} in a semigroup S by those of $\widetilde{\mathcal{R}}_{E}$ (making reference to a specific set of idempotent E, which may not be the whole of the idempotents $E(S)$). This class of semigroup is known as left restriction semigroup. Now since $\mathrm{BR}(\mathrm{M}, \theta)$ defines the $*$ - bisimple ample ω-semigroup and *-simple ample ω-semigroup, it is natural to ask whether $\operatorname{BR}(\mathrm{M}, \theta)$ also defines the left restriction semigroup. In this paper, we focus on showing that $\mathrm{BR}(\mathrm{M}, \theta)$ is a $\widetilde{\mathcal{J}}_{E}$-simple left restriction ω - semigroup.

2. PRELIMINARIES

In this section we recall some definitions as well as some known results which will be useful in the sequel.
Definition 2.1. Let S be a semigroup and let $E \subseteq E(S)$ (E is the distinguished semilattice of idempotents).
Let $a, b \in S$, we have following relations on S

$$
\begin{aligned}
& a \widetilde{\mathcal{R}}_{E} b \Leftrightarrow \forall e \in E, \quad e a=a \Leftrightarrow e b=b \\
& a \widetilde{\mathcal{L}}_{E} b \Leftrightarrow \forall e \epsilon E, \quad a e=a \Leftrightarrow b e=b \\
& a \widetilde{\mathcal{D}}_{E} b \Leftrightarrow \exists c \in S \text { such that } a \widetilde{\mathcal{L}}_{E} c \widetilde{\mathcal{R}}_{E} b \text { that is } \widetilde{\mathcal{D}}_{E}=\widetilde{\mathcal{L}}_{E} \vee \widetilde{\mathcal{R}}_{E} .
\end{aligned}
$$

Definition 2.2. Let S be a semigroup. Then S is said to be left (right) ample if
i) every element $a \in S$ is $\mathcal{R}^{*}\left(\mathcal{L}^{*}\right)$ - related to an idempotent, denoted by $a^{\dagger}\left(a^{*}\right)$
ii) for all $a \in S$ and all $e \in E(S)$,

$$
a e=(a e)^{\dagger} a \quad\left(e a=a(e a)^{*}\right) .
$$

Definition 2.3. Let S be a semigroup and let $E \subseteq E(S)$. Then S is said to be left (right) restriction semigroup if
i) E is a semilattice
ii) every element $a \in S$ is $\widetilde{\mathcal{R}}_{E}\left(\widetilde{\mathcal{L}}_{E}\right)$ - related to an idempotent of E, denoted by $a^{\dagger}\left(a^{*}\right)$
iii) the relation $\widetilde{\mathcal{R}}_{E}\left(\widetilde{\mathcal{L}}_{E}\right)$ is a left (right) congruence
iv) the left (right) ample condition holds:

$$
a e=(a e)^{\dagger} a \quad\left(e a=a(e a)^{*}\right)
$$

Definition 2.4. Let S be a left (right) restriction semigroup. A left (right) ideal I of S is said to be a ~ - left (right) ideal if it is the union of $\widetilde{\mathcal{R}}_{E}\left(\widetilde{\mathcal{L}}_{E}\right)$-classes, that is, if $a \in I$ then $\widetilde{R}_{a}\left(\widetilde{L}_{a}\right) \subseteq I$. The smallest \sim - left (right) ideal containing a which is the union of $\widetilde{\mathcal{D}}_{E}$-classes is denoted by $\widetilde{J}(a)$. We define the relation $\widetilde{\mathcal{J}}_{E}$ on S by $a \widetilde{\mathcal{J}}_{E} b \Leftrightarrow \widetilde{J}(a)=\widetilde{J}(b)$. A left (right) restriction semigroup S is said to be $\widetilde{\mathcal{J}}_{E}$-simple if $\widetilde{\mathcal{J}}_{E}$ is the universal relation.
Lemma 2.5 [4]. Let S be a semigroup and $a, b \in S$. Then $b \in \widetilde{J}(b)$ if and only if there are elements $a_{0}, a_{1}, \ldots, a_{n} \in S, x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in S^{1}$ such that $a=a_{0}, b=a_{n}$ and $a_{i} \widetilde{\mathcal{D}}_{E} x_{i} a_{i-1} y_{i}$, for $i=1,2, \ldots, n$.
Lemma 2.6 [3]. Let S be a semigroup and e be an idempotent in S. Then the following are equivalent for $a \in S$.
i) $a \mathcal{R}^{*} e$
ii) $e a=a$, and for all $x, y \in S^{1}, x a=y a$ implies $x e=y e$.

Lemma 2.7 [5]. Let S be a semigroup and $E \subseteq E(S)$, let $a \in S, e \in E$. Then the following conditions are equivalent:
i) $a \tilde{\mathcal{R}}_{E} e$
ii) $e a=a$ and for all $f \in E, f a=a \Rightarrow f e=e$.

In a similar way to the *-relations, the ~-relations are also related to the Green's relations as follows:
Lemma 2.8 [5]. In any semigroup S we have $\mathcal{R} \subseteq \mathcal{R}^{*} \subseteq \tilde{\mathcal{R}}_{E}$. If S is regular, and $E=E(S)$ then $\tilde{\mathcal{R}}_{E} \subseteq \mathcal{R}$ and so $\tilde{\mathcal{R}}_{E} \subseteq \mathcal{R}^{*}$.
Dually we have $\mathcal{L} \subseteq \mathcal{L}^{*} \subseteq \tilde{\mathcal{L}}_{E}$, and if S is regular, and $E=E(S)$ then $\tilde{\mathcal{L}}_{E} \subseteq \mathcal{L}$ and so $\tilde{\mathcal{L}}_{E} \subseteq \mathcal{L}^{*}$.

3. BRUCK-REILLY EXTENSION OF A MONOID

Let M be a monoid with identity e and $\theta: M \rightarrow M$ be a morphism. Let θ^{0} be the identity map on M and $S=B R(M, \theta)$ consist of set $S=\mathbb{N}^{0} \times M \times \mathbb{N}^{0}$ (where \mathbb{N}^{0} denote the set of non-negative integers) with multiplication defined by the rule

$$
(m, x, n)(p, y, q)=\left(m-n+t, x \theta^{t-n} y \theta^{t-p}, q-p+t\right)
$$

where $t=\max (n, p)$, for $(m, x, n),(p, y, q) \in S$.
This construction is a generalization of constructions by Bruck and Reilly, thus $\operatorname{BR}(M, \theta)$ is known as the Bruck-Reilly extension of a monoid determined by morphism.

Proposition 3.1 [6]. $B R(M, \theta)$ is a semigroup.
It is also important to note that the idempotents of $B R(M, \theta)$ are of the form (m, e, m) where $m \in \mathbb{N}^{0}$ and $e \in E(M)$.
Proposition 3.2 [6]. $B R(M, \theta)$ is regular if and only if M is regular.
From Proposition 3.2 [6], we know that $B R(M, \theta)$ is an inverse semigroup.
Proposition 3.3 [6]. Let $(m, x, n),(p, y, q) \in B R(M, \theta)$. Then
i) $\quad(m, x, n) \mathcal{R}(p, y, q) \Leftrightarrow m=p$
ii) $(m, x, n) \mathcal{L}(p, y, q) \Leftrightarrow n=q$

Asibong-Ibe [1] considered the $*$-bisimple ample ω-semigroup and proved that they are isomorphic to certain generalized Bruck-Reilly extension $B R^{*}(M, \theta)$ of a cancellative monoid M where θ is a morphism. Below are some of his results.

Proposition 3.4 [1]. Let M be a cancellative monoid with identity e and $\theta: M \rightarrow M$ be a morphism. Let ($0, e, 0$) be the identity of $B R^{*}(M, \theta)$. Then for $(m, x, n),(p, y, q) \in B R^{*}(M, \theta)$
i) $(m, x, n) \mathcal{R}^{*}(p, y, q) \Leftrightarrow m=p$
ii) $(m, x, n) \mathcal{L}^{*}(p, y, q) \Leftrightarrow n=q$

Proposition 3.5 [1]. $B R^{*}(M, \theta)$ is left ample.
Yu Shang and Limin Wang [7] considered a similar construction of the Bruck-Reilly extension of a monoid. They used this construction to give a structure theorem for *-bisimple ample I-semigroup. Below are some of their results.

Construction 3.6. [7]. Let M be a monoid with identity e and $\theta: M \rightarrow M$ be a morphism. The set $S=G B R^{*}(M, \theta)=I \times$ $M \times I$ (where I denotes a non-empty set) with multiplication defined by the rule
$(m, x, n)(P, y, q)= \begin{cases}\left(m, x \cdot f_{n-p, p}^{-1} \cdot y \theta^{n-p} \cdot f_{n-p, q}, q-p+n\right) & \text { if } n \geq p \\ \left(m-n+p, f_{p-n, m}^{-1} \cdot x \theta^{p-n} \cdot f_{p-n, n} \cdot y, q\right) & \text { if } n \leq p\end{cases}$
(where θ^{0} is the identity map on $M, f_{0, n}=e$ is the identity of M) forms a semigroup. This semigroup is called the generalized Bruck-Reilly *-extension of M determined by θ.
Remark 3.7. The idempotents of $G B R^{*}(M, \theta)$ are of the form (m, e, m), where $m \epsilon \mathbb{N}^{0}$.
Lemma 3.8 [7]. Let $(m, x, n),(p, y, q) \in \operatorname{GBR}^{*}(M, \theta)$. Then
i) $(m, x, n) \mathcal{L}^{*}(p, y, q) \Leftrightarrow n=q$
ii) $(m, x, n) \mathcal{R}^{*}(p, y, q) \Leftrightarrow m=p$

4. $\widetilde{\mathcal{J}}_{E}$ - SIMPLE LEFT RESTRICTION $\boldsymbol{\omega}$-SEMIGROUP

In this section, we show that $B R(M, \theta)$ is a $\widetilde{\mathcal{J}}_{E^{-}}$- simple left restriction ω-semigroup. But first, we need the definition of a strong semilattice of monoids, which is taken from [6].

Definition 4.1. Let M be a semigroup which is the disjoint union of monoids M_{α}, where the indices α form a semilattice Y. Suppose that for all $\alpha, \beta, \gamma, M_{\alpha} M_{\beta} \subseteq M_{\alpha \beta}$. Then M is called a semilattice Y of monoids M_{α} where $\alpha \in Y$. Furthermore, consider $\alpha, \beta \in Y$ where $\alpha \geq \beta$. Let $\varphi_{\alpha, \beta}: M_{\alpha} \rightarrow M_{\beta}$ be a monoid morphism such that :
i) $\varphi_{\alpha, \alpha}=\operatorname{id}_{\mathrm{M}_{\alpha}}$ for all $\alpha \in Y$
ii) for $\alpha, \beta, \gamma \in Y$, where $\alpha \geq \beta \geq \gamma, \varphi_{\alpha, \beta} \varphi_{\beta, \gamma}=\varphi_{\alpha, \gamma}$.

Then $\varphi_{\alpha, \beta}$ is called a connecting morphism. Furthermore, if for all $x, y \in M$ where $x \in M_{\alpha}$ and $y \in M_{\beta}$ we have that

$$
x . y=\left(x \varphi_{\alpha, \alpha \beta}\right)\left(y \varphi_{\beta, \alpha \beta}\right)
$$

Then $M=\left[Y, M_{\alpha} ; \varphi_{\alpha, \beta}\right]$ is called a strong semilattice Y of monoids M_{α} with connecting morphisms $\varphi_{\alpha, \beta}$.
It can be easily shown that $(M,$.$) is a semigroup with identity e_{0}$ and the multiplication on M extends the multiplication in each M_{α}.

Proposition 4.2. Let $M=\bigcup_{\alpha=0}^{d-1} M_{\alpha}$ be a strong semilattice of the monoids M_{α} where $d \epsilon \mathbb{N}^{0}$, the indices α form a chain $0>1>\cdots>d-1$ and the connecting morphisms are all monoid morphisms. Let $\theta: M \rightarrow M_{0}$ be a monoid morphism and $E=\left\{\left(m, e_{\alpha}, m\right): m \in \mathbb{N}^{0}, 0 \leq \alpha \leq d-1\right\}$ where e_{α} is the identity of M_{α}. Then for any $(m, x, n),(p, y, q) \in B R(M, \theta)$ we have
i) $(m, x, n) \widetilde{\mathcal{R}}_{E}(p, y, q) \Leftrightarrow m=p$, and $x, y \in M_{\alpha}$.
ii) $(m, x, n) \widetilde{\mathcal{L}}_{E}(p, y, q) \Leftrightarrow n=q$, and $x, y \in M_{\alpha}$.
iii) $(m, x, n) \widetilde{\mathcal{D}}_{E}(p, y, q) \Leftrightarrow x, y \in M_{\alpha}$, so $B R(M, \theta)$ has $d \widetilde{\mathcal{D}}_{E}$ - classes.
iv) $(m, x, n) \widetilde{\mathcal{J}}_{E}(p, y, q)$. That is, $\widetilde{\mathcal{J}}_{E}$ is the universal relation.

Proof. i)
\Rightarrow Let $(m, x, n) \widetilde{\mathcal{R}}_{E}(p, y, q)$, where $x \in M_{\alpha}$ and $y \in M_{\beta}$ for some α and β. Then for $\left(m, e_{\alpha}, m\right) \in E$
$\left(m, e_{\alpha}, m\right)(m, x, n)=\left(m-m+t_{1}, e_{\alpha} \theta^{t_{1}-m} x \theta^{t_{1}-m}, n-m+t_{1}\right)=(m, x, n)$
where $t_{1}=\max (m, m)=m$
$\left(m, e_{\alpha}, m\right)(p, y, q)=\left(m-m+t_{2}, e_{\alpha} \theta^{t_{2}-m} y \theta^{t_{2}-p}, q-p+t_{2}\right)=(p, y, q)$
where $\mathrm{t}_{2}=\max (m, p)$
If $m \leq p$, this gives
$\left(t_{2}, e_{\alpha} \theta^{t_{2}-m} y \theta^{t_{2}-p}, q-p+t_{2}\right)=(p, y, q)$
Comparing the first coordinates gives $t_{2}=p$
Similarly if $p \leq m$, this gives

$$
\left(t_{2}, e_{\alpha} y \theta^{t_{2}-p}, q-p+t_{2}\right)=(p, y, q)
$$

Comparing the first coordinates gives $t_{2}=m=p$
So we have that $m=p \Rightarrow e_{\alpha} \theta^{t_{2}-m}=e_{\alpha}$.
We know that $e_{\alpha} \in M_{\alpha}, y \in M_{\beta}$, so $e_{\alpha} y \in M_{\max }(\alpha, \beta) \Rightarrow \max (\alpha, \beta)=\beta$, that is $e_{\beta} x=x \Rightarrow \beta \leq \alpha$. Thus $m=p$ and $\alpha=$ β.
\Leftarrow Let $m=p, x, y \in M_{\alpha}$ and $\left(l, e_{\beta}, l\right) \in E$ be such that

$$
\left(l, e_{\beta}, l\right)(m, x, n)=\left(l-l+t_{3}, e_{\beta} \theta^{t_{3}-l} x \theta^{t_{3}-m}, n-m+t_{3}\right)=(m, x, n)
$$

where $t_{3}=\max (l, m)$
Then necessarily $l \leq m$ and $\beta \leq \alpha$.

$$
\left(l, e_{\beta}, l\right)(m, y, q)=\left(m, e_{\beta} \theta^{m-l} y, q\right)=(m, y, q)
$$

Similarly, it is easy to see that for $\left(k, e_{\beta}, k\right) \in E$, we have

$$
\begin{aligned}
& \left(k, e_{\beta}, k\right)(p, y, q)=(p, y, q), \\
& \left(k, e_{\beta}, k\right)(p, x, n)=(p, x, n) .
\end{aligned}
$$

Thus $(m, x, n) \widetilde{\mathcal{R}}_{E}(p, y, q)$.
ii) The proof is similar to i).
iii)
\Rightarrow Let $(m, x, n) \widetilde{\mathcal{D}}_{E}(p, y, q)$. Then there exists an element $(m, x, q) \in B R(M, \theta)$ such that

$$
(m, x, n) \widetilde{\mathcal{R}}_{E}(m, z, q) \widetilde{\mathcal{L}}_{E}(p, y, q)
$$

Clearly, it follows that $x, y, z \in M_{\alpha}$ for some α.
\Leftarrow Let $x, y \in M_{\alpha}$, then clearly we have

$$
(m, x, n) \widetilde{\mathcal{R}}_{E}(m, x, q) \widetilde{\mathcal{L}}_{E}(p, y, q)
$$

Thus $(m, x, n) \widetilde{\mathcal{D}}_{E}(p, y, q)$.
iv) Let $(m, x, n),(p, y, q) \in B R(M, \theta)$ where $x \in M_{\alpha}$ and $y \in M_{\beta}$. Then we have

$$
\begin{aligned}
\left(p, e_{\beta}, m+1\right)(m, x, n) & =\left(p-(m+1)+t, e_{\beta} \theta^{t-m-1} x \theta^{t-m}, n-m+t\right) \\
& =\left(p, e_{\beta}(x \theta), n+1\right)
\end{aligned}
$$

where $t=\max (m+1, m)=m+1$. Obviously $e_{\beta}(x \theta) \in M_{\beta}$. Then

$$
\left(p, e_{\beta}(x \theta), n+1\right) \widetilde{\mathcal{D}}_{E}(p, y, q)
$$

In the same way $\left(m, e_{\alpha}, p+1\right)(p, y, q) \widetilde{\mathcal{D}}_{E}(m, x, n)$.
Thus $(m, x, n) \widetilde{\mathcal{J}}_{E}(p, y, q)$. It now follows from Lemma 2.5[4] that $B R(M, \theta)$ is $\widetilde{\mathcal{J}}_{E^{-}}$simple.
Proposition 4.3. $B R(M, \theta)$ is left restriction
Proof. We have to check that the conditions of Definition 2.3 hold.
First we show that the elements of E commute. So for $m, n \in \mathbb{N}^{0}$, we have
$\left(m, e_{\alpha}, m\right)\left(n, e_{\beta}, n\right)=\left(m-m+t, e_{\alpha} \theta^{t-m} e_{\beta} \theta^{t-n}, n-n+t\right)$

$$
\begin{aligned}
& =\left(t, e_{\alpha} \theta^{t-m} e_{\beta} \theta^{t-n}, t\right)=\left(t, e_{\alpha} \theta^{t-n} e_{\beta} \theta^{t-m}, t\right) \\
& =\left(n, e_{\beta}, n\right)\left(m, e_{\alpha}, m\right)
\end{aligned}
$$

where $t=\max (m, n)$.
To show that $(m, x, n) \widetilde{\mathcal{R}}_{E}\left(m, e_{\alpha}, m\right)$, we have

$$
\begin{aligned}
\left(m, e_{\alpha}, m\right)(m, x, n) & =\left(m-m+t_{1}, e_{\alpha} \theta^{t_{1}-m} x \theta^{t_{1}-m}, n-m+t_{1}\right) \\
& =\left(t_{1}, e_{\alpha} \theta^{0} x \theta^{0}, n\right)=(m, x, n)
\end{aligned}
$$

where $t_{1}=\max (m, m)=m$
For $\left(p, e_{\beta}, p\right) \in E$,

$$
\begin{aligned}
\left(p, e_{\beta}, p\right)(m, x, n) & =(m, x, n) \Longrightarrow\left(p-p+t_{2}, e_{\beta} \theta^{t_{2}-p} x \theta^{t_{2}-m}, n-m+t_{2}\right) \\
& =\left(t_{2}, x \theta^{t_{2}-m}, n-m+t_{2}\right)=(m, x, n), t_{2}=\operatorname{maxi}(p, m) \\
& \Rightarrow t_{2}=m, \\
& \Rightarrow\left(p, e_{\beta}, p\right)\left(m, e_{\alpha}, m\right)=\left(m, e_{\alpha}, m\right)
\end{aligned}
$$

So $(m, x, n) \widetilde{\mathcal{R}}_{E}(m, e, m)$ and we let $(m, x, n)^{\dagger}=\left(m, e_{\alpha}, m\right)$.
To show that $\widetilde{\mathcal{R}}_{E}$ is a left congruence, let $(m, x, n),(p, y, q) \in B R(M, \theta)$

$$
\begin{aligned}
(m, x, n) \widetilde{\mathcal{R}}_{E}(p, y, q) & \Leftrightarrow(m, x, n)^{\dagger}=(p, y, q)^{\dagger} \\
& \Leftrightarrow\left(m, e_{\alpha}, m\right)=\left(p, e_{\beta}, p\right) \\
& \Leftrightarrow m=p
\end{aligned}
$$

So $(m, x, n) \widetilde{\mathcal{R}}_{E}(p, y, q) \Rightarrow m=p$

$$
\Rightarrow \max (z, m)=\max (z, p), \text { for } z \in \mathbb{N}^{0}
$$

$$
\Rightarrow \mathrm{k}-\mathrm{z}+\max (\mathrm{z}, m)=k-z+\max (\mathrm{z}, p) \text {, for } k, z \in \mathbb{N}^{0}
$$

$$
\Rightarrow((k, c, z)(m, x, n))^{\dagger}=((k, c, z)(p, y, q))^{\dagger}
$$

$$
\Rightarrow(k, c, z)(m, x, n) \widetilde{\mathcal{R}}_{E}(k, c, z)(p, y, q)
$$

for any $(k, c, z) \in B R(M, \theta)$. Thus $\widetilde{\mathcal{R}}_{E}$ is a left congruence.
By Proposition 3.5[1], the left ample condition hold and so $B R(M, \theta)$ is left restriction.
Let $E=\left\{f_{\alpha}: \alpha \in \mathbb{N}^{0}\right\}$ be the distinguished semilattice of idempotents, where $f_{\alpha} \leq f_{\beta} \Leftrightarrow \alpha \geq \beta$ for all $\alpha, \beta \in \mathbb{N}^{0}$. Then E is called C_{ω}, that is, C_{ω} is a descending chain

$$
f_{0}>f_{1}>f_{2}>\ldots
$$

If S is a left (right) restriction with distinguished semilattice of idempotents E, then S is said to be an ω-semigroup if E is isomorphic to C_{ω}.
Proposition 4.4. $B R(M, \theta)$ is an ω-semigroup
Proof. Let $\left(m, e_{\alpha}, m\right),\left(n, e_{\beta}, n\right) \in E$ where $m>n$. Then

$$
\left(m, e_{\alpha}, m\right)\left(n, e_{\beta}, n\right)=\left(m, e_{\alpha}\left(e_{\beta} \theta^{m-n}\right), m\right)=\left(m, e_{\alpha}, m\right)
$$

since $\left(e_{\beta} \theta^{m-n}\right)$ is the identity of M, so we have $\left(m, e_{\alpha}, m\right)<\left(n, e_{\beta}, n\right)$. Also if $m=n$ and $\alpha \geq \beta$, then we have

$$
\left(m, e_{\alpha}, m\right)\left(m, e_{\beta}, m\right)=\left(m, e_{\alpha} e_{\beta}, m\right)=\left(m, e_{\alpha}, m\right)
$$

So that $\left(m, e_{\alpha}, m\right) \geq\left(m, e_{\beta}, m\right) \Leftrightarrow m<n$, or if $m=n$ and $\alpha \leq \beta$. So E is the chain

$$
\begin{aligned}
&\left(0, e_{0}, 0\right)>\left(0, e_{1}, 0\right)>\cdots>\left(0, e_{d-1}, 0\right) \\
&>\left(1, e_{0}, 1\right)>\left(1, e_{1}, 1\right)>\cdots>\left(1, e_{d-1}, 1\right) \\
&>\left(2, e_{0}, 2\right)>\left(2, e_{1}, 2\right)>\cdots>\left(2, e_{d-1}, 2\right) \\
&>\cdots
\end{aligned}
$$

Thus $B R(M, \theta)$ is a $\widetilde{\mathcal{J}}_{E}$-simple left restriction ω-semigroup.
Hence, we get the following conclusion:
Theorem 4.5. Let $M=\bigcup_{\alpha=0}^{d-1} M_{\alpha}$ be a strong semilattice of the monoids M_{α} where $d \epsilon \mathbb{N}^{0}$, the indices α form a chain $0>1>\cdots>d-1$ and the connecting morphisms are all monoid morphisms. Let $\theta: M \rightarrow M_{0}$ be a monoid morphism and $E=\left\{\left(m, e_{\alpha}, m\right): m \in \mathbb{N}^{0}, 0 \leq \alpha \leq d-1\right\}$ where e_{α} is the identity of M_{α}. Then $B R(M, \theta)$ is a $\widetilde{\mathcal{J}}_{E}$-simple left restriction ω-semigroup.

5. REFERENCES

[1] Asibong-Ibe U. *-Bisimple type A ω-semigroups 1, Semigroup Forum. 31(1985), 99-117.
[2] Asibong-Ibe U. *-Simple type A ω-semigroups, Semigroup Forum. 47(1993), 135-149.
[3] Fountain J.B . Adequate semigroups. Proc. London. Math. Soc 44(1982), 103-129
[4] Fountain, J.B, Abundant semigroups, Proc. London.Math.Soc., (3) 44 (1982), 103-129.
[5] Gould. V, Restriction semigroups, NBSAN, University of York, (2011), 1-26.
[6] Howie J.M. Fundamentals of semigroup theory. Oxford University press Inc USA (1995).
[7] Yu Shang and Limin Wang. *-Bisimple type A I-semigroup. Southeast Asian Bulletin of Math. (2012), 535-545.

