Using 16S rRNA Identification of an Endo-β-1,4-Glucanase Producing Endophyte from <i>Brachytrupes membranaceus</i> Gut

Authors

  • C. J. Zvidzai Chinhoyi University of Technology Off Chirundu Road Bag 7724 Chinhoyi Zimbabwe
  • K. Mugova
  • C. Chidewe
  • R. Musundire

Keywords:

Brachytrupes membranaceus, gut, cellulase, Enterobacter asburiae, 16S rDNA

Abstract

This work was focusing on bioprospecting for cellulase producing endophytes from the gut of Brachytrupes membranaceus. Identification of bacterial strains that have the capability of efficiently and effectively hydrolyzing the cellulosic macromolecular structure has realized a microbe that is a mesophilic. The microbe was characterized using 16S rDNA gene amplification and sequencing for phylogenetic relatedness. The 16SrRNA gene amplimer was sequenced using nucleotide sequencing on ABI 3100 DNA Analyser capillary electrophoresis sequencing system. The sequence was used for BLASTN search bioinformatics tools and noted that the sequence had 97 % homology with the Enterobacter asburiae. Such phylogenetic relatedness has subspecies differences that can be identified at the genomic level. The organism can grow optimally at pH 6.0 and temperature 40 ºC. Crude cellulase activity showed an optimum enzymatic activity conditions which were exactly the same to growth conditions. The enzymes will be characterized and evaluated for their potential application.

Author Biography

C. J. Zvidzai, Chinhoyi University of Technology Off Chirundu Road Bag 7724 Chinhoyi Zimbabwe

Graduate Studies, Director

 

References

Asis C and Adachi K: Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweet potato stem in Japan. Lett. Appl. Microbiol., 38, 19–23, 2009.

Bahramnian S, Chamani M, Azin M and Gerami A: Efficient production of cellulase and xylanase byu anaerobic rumen microbial flora grown on wheat straw. African J. Agric. Research, 6, 2711 – 2741, 2011.

Bandi C, Sironi M, Damiani G, Magrassi L, Nalepa CA, Laudani U, Sacchi L: The establishment of intracellular symbiosis in an ancestor of cockroaches and termites, Proc. R. Soc. Lond. Biol. Sci. 259: 293-299, 1995.

Cho M-J, Kim Y-H, Shin K, Kim Y-K, Kim Y-S, Kim T-J: Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: Low endo-ï¢-1,4-glucanase activity. Biochem. Biophy. Research Comm., 395: 432–435, 2010.

Cowan TS and Steel KK: Manual for the Identification of Medical Bacteria. Barrow G. I. and Feltham R. K. A. (Editors). Cambridge University Press. Cambridge. UK.1993.

Degryse E, Glandsdorff N and Pierard A: A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Archives Microbiol., 117, 189 – 196, 1978.

Ekinci SM, Ozcan N, Ozkose E and Flint HJ: A study on cellulolytic and hemicellulolytic enzymes of anaerobic rumen bacterium Ruminococcus flavefaciens strain 17. Turk. J. Vet. Anim. Sci., 25: 703-709, 2001.

Gerhardt P, Murray RGE, Wood WA and Krieg NR: Physicochemical factors in growth. In Methods for General and Molecular Bacteriology. American Society for Microbiology. Washington DC. 137 – 154, 1994.

Gerhardt, P., Murray, R. G. E., Wood, W. A. and Krieg, N. R. 1994 Physicochemical factors in growth. In Methods for General and Molecular Bacteriology. American Society for Microbiology. Washington DC. 137 – 154.

Ghose, T. K. 1987 Measurement of cellulase activities. Pure Appl. Chem., 59, 257-268.

Gilkes, N. R., Kilburn, G. J., Miller, R. C. and Warren, R. A. J. 1991 Bacterial cellulases. Bioresource Technol., 36, 21 – 35.

Harpster MH, Dawson DM, Nevins DJ, Dunsmuir P, Brummell DA: Constitutive overexpression of ripening-related pepper endo-1,4-β-glucanase in transgenic tomato fruit does not increase xyloglucan depolymerization of fruit softening. Plant Mol. Biol. 50: 357–369, 2002.

Hartati S, Sudarmonowati E, Park YW, Kaku T, Kaida R, Baba K and Hayashi T: Overexpression of Poplar Cellulase Accelerates Growth and Disturbs the Closing Movements of Leaves in Sengon. Plant Physiol., 147: 552 – 56, 2008.

Hayashi T: Xyloglucans in the primary cell wall. Annu Rev Plant. Physiol. Plant Mol. Biol. 40: 139–168, 1989.

Horikoshi K: Alkalophilic: Some applications, their products for Biotechnology. Microbiol. Mol. Biol. Rev., 63, 735 – 750, 1999.

Huang S, Sheng P and Zhang H: Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae). International Journal of Molecular Sciences,13, 2563 – 2577, 2012.

Ito S: Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles, 1, 61 – 66, 1997.

Kim N, Choo YM, Lee KS, Hong SJ, Seol KY, Je YH, Sohn HD and Jin BR: Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comp. Biochem. Physiol. 150B, 368–376, 2008.

Koth K, Boniface J, Chance EA, Hanes MC: Enterobacter asburiae and Aeromonas hydrophila: Soft tissue infection requiring debridement. Orthopedics, 35, 996–999, 2012.

Lau YY Sulaiman J, Chen JW, Yin W-F, Chan K-G: Quorum Sensing Activity of Enterobacter asburiae isolated from Lettuce Leaves. Sensors,13, 14189–14199, 2013.

Lau YY, Yin W-F and Chan K-G: Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium. Sensors, 14, 13913-13924, 2014.

Martin MM: Cellulose digestion in insects. Comp. Biochem. Physiol., 75, 426 – 428, 1983.

Matteotti C, Haubruge E, Thonart P, Francis F, De Pauw E, Portetelle D and Vandenbol M: Characterization of a new β-glucosidase/β-xylosidase from the gut biota of the termite (Reticulitermes santinesis). REMS Microbiol. Lett., 314: 147-157, 2010.

Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B: Purification and characterisation of cellulases produced by two Bacillus strains. J. Biotechnol.,83, 177-187, 2002.

Morgan MRJ: Gut carbohydrases in locusts and grasshoppers. Acrida 5, 45–58, 1976.

Neidhardt FC, Ingraham JL and Schaechter M: Physiology of the bacterial cell. A molecular approach. Ed. Smith, CA pp 507. Sinauer Associates, Sunderland, MA. 1990.USA. ISBN 0–87893–608–4, 1992.

Oppert C, Klingeman WE, Willis JD, Oppert B and Jurat-Fuentes JL: "Prospecting for cellulolytic activity in insect digestive fluids" Comp. Biochem. Physiol. Part B, 155: 145-154, 2010.

Sambrook J, Fritsch EF and Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor. New York, 1989.

Srinivasan K, Murakami M, Nakashimada Y, Nishio N: Efficient Production of Cellulolytic and Xylanolytic Enzymes by the rumen anaerobic fungus, Neocallimastix frontalis, in a repeated batch culture. J. Biosci. Bioeng., 91:153-15, 2001.

Srinivasan K, Murakami M, Nakashimada Y, Nishio N: Efficient Production of Cellulolytic and Xylanolytic Enzymes by the rumen anaerobic fungus, Neocallimastix frontalis, in a repeated batch culture. J. Biosci. Bioeng., 91: 153-1, 2001.

Teather RM and Wood PJ: Use of Congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from bovine rumen. Applied and Environmental Microbiology, 43, 777 – 780, 1982.

Thayer DW: Facultative wood-digesting bacteria from the hind-gut of the termite Reticulitermes Hesperus. J. Gen. Microbiol., 95, 287 – 296,1976.

Watanabe H and Tokuda G: Animal cellulases. Cell. Mol. Life Sci. 58, 1167–1117, 2001.

Watanabe H and Tokuda G: Cellulolytic systems in insects. Ann. Rev. Entomol. 55, 609–632, 2010.

Willis JD, Oppert B, Oppert C, Klingeman WE and Jurat-Fuentes JL: “Cloning, expression, and characterization of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae)†J. Insect Physiol. 57(2): 300-306, 2011.

Willis JD, Oppert C and Jurat-Fuentes JL: Methods for discovery and characterization of cellulolytic enzymes from insects. Insect Sci., 00, 1 – 15, 2010.

Zhang D, Lax AR, Raina AK and Bland JM: Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli. Insect Biochem. Mol. Biol., 39, 516–522, 2009.

Zhang M, Su R, Qi W and He Z: Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Applied Biochemistry and Biotechnology. , DOI:10.1007/s12010-009-8602, 2001.

Zhang YHP and Lynd LR: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. and Bioeng. 88: 797-824, 2004.

Zhou X, Smith JA, Oi FM, Koehler PG, Bennett GW & Scharf ME: Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene. 395, 29–39, 2007.

Zhou X, Wheeler MM, Oi FM, Scharf ME: RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem. Molec. Biol. 38, 805–815, 2008.

Zvauya R and Zvidzai C: Constitutive production of endoglucanase by a Bacillus sp. isolated from a Zimbabwean hot spring. World J. Microbiol. Biotechnol.,11: 658-660, 2011.

Zvidzai CJ, Hatti-Kaul R., Sithole-Niang I., Zvauya R. and Delgado O: Cloning, sequencing and expression of an endo-ï¢-1,4-glucanase (celG) gene of a Bacillus subtilis CHZ1. J. Appl. Sci. Southern Africa. 8: 65 – 75, 2003.

Downloads

Published

2015-08-17

How to Cite

Zvidzai, C. J., Mugova, K., Chidewe, C., & Musundire, R. (2015). Using 16S rRNA Identification of an Endo-β-1,4-Glucanase Producing Endophyte from <i>Brachytrupes membranaceus</i> Gut. Asian Journal of Applied Sciences, 3(4). Retrieved from https://www.ajouronline.com/index.php/AJAS/article/view/2666

Issue

Section

Articles