Random Molecular Transport around Biological Membranes


  • Nzerem Francis Egenti University of Port Harcourt


reaction-diffusion, spherical, stochastic process, Gauss function


The spatio-temporal delivery of essential substances across biological membrane is critical to its survival and the wellbeing of the owner-organism. The process presupposes a permeable soft membrane and the transport are marked by reaction and diffusion phenomena. The spherical configuration of many biological membranes informs the present study on the reaction-diffusion phenomena around spherical membranes, with probability current. The diffusion equation describing the ensemble of reacting molecules around such membranes holds well in elucidating the delivery of drugs across biological cells.


Brown B.S. “Biological Membranesâ€,Available online: www.biochemistry.org/portals/0/education/docs/basc 08_full.pdf (accessed on 13-03-2015)

Ostro, M.E. The Lively Membranes, Cambridge University Press, 1983.

Introduction to biological membranes, Available online: http://themedicalbiochemistrypage .org/membranes .php#composition (accessed on 13-03-2015).

Milsom, D.W., “Biological membranesâ€, Biological Sciences Review, 6(4), 16-20,1994.

Membrane permeability, Available online: http://www.dartmouth.edu/~cbbc/courses/bio15/ 2004 W/slides/L04.pdf (accessed on 14-03-2015).

Warren B., Shinpei O,â€Fusion in phospholipid spherical membranesâ€, The Journal of Membrane Biology, Volume 23, Issue 1, pp 385-401,1975.

Bosezzi, D; Rosenberg G., Formalizing Spherical membrane structures and membranes proteins population, Available online: http://link.springer.com/chapter/10.1007%2F11963516_2#page-2 (accessed on 10-02-2015).

Haslach , H. W.; Humphrey, J. D., “Dynamics of biological soft tissue and rubber: internally pressurized spherical membranes surrounded by a fluidâ€, International Journal of Non-Linear Mechanics, Volume 39, Issue 3,399–420,2004.

Kenkre VM, Kumar N., “Nonlinearity in bacterial population dynamics: proposal for experiments for the observation of abrupt transitions in patchesâ€, Proc Natl. Acad. Sci., 105:18752–7, 2008.

Volpert A.I.; Volpert VA. “Applications of the rotation theory of vector fields to the study of wave solutions of parabolic equationsâ€, Trans Moscow Math Soc., 52:59–108, 1990.

Brillinger, D. R., “A Particle Migrating Randomly on a Sphereâ€, Journal of Theoretical Probability, Vol. 10, No. 2, 429-443, 1997.

Nicholson C., “Diffusion and related transport mechanisms in brain tissueâ€, Rep. Prog. Phys., 64,815–884, 2001

Lefèvre J, Mangin J-F., “A Reaction-Diffusion Model of Human Brain Developmentâ€, PLoS Comput Biol., 6(4), 2010 , e1000749. doi:10.1371/journal.pcbi.1000749,

Amatore, C.; Oleinick,A.; Klymenko,O.V.; Svir,I., “Theory of Long-Range Diffusion of Proteins on a Spherical Biological Membrane: Application to Protein Cluster Formation and Actin-Comet Tail Growthâ€, Chemphyschem, , Vol.10,1586-1592, 2009.

V. Volpert , S. Petrovskii ,â€Reaction–diffusion waves in biologyâ€, Physics of Life Reviews ,6,267–310, 2009.

Chaudhry QA, Morgenstern R, Hanke M, and Dreij K(2012), Influence of Biological Cell Geometry on Reaction and Diffusion Simulation, Available online: http://www.diva-portal.org/smash/get /diva 2:516281/FULLTEXT01.pdf (accessed on 22-03-2015)

Radek, E, S; Chapman, J.; Philip K..M. , A practical guide to stochastic simulations of reaction-diffusion processes, Available online: http://people.maths.ox.ac.uk/erban/Education/ StochReacDiff.pdf

Nzerem F E. Orumie C.U., “Stochastic description of the dynamics of thrombo-embolus in an arterial compartmentâ€, International Journal of Applied Mathematical Sciences ,3(1)(2015) 6-11, doi; 10.14419/ijams.v3i1.4062

Gregoire, N., Anne D. W.,“Reaction-diffusion systemsâ€, Scholarpedia, 2(9):1475, 2007. doi:10.4249/scholarpedia.1475

Klemens F., Reactions-Diffusion Equations, Available online: http://www.damtp. cam.ac.uk/ research/apde/teaching/ CamRD2010.pdf (accessed on 22-03- 2015 )

Diffusion and Reaction, Available online: https://www.scribd.com/doc/189241200/Chapter12-Diffusion-Reaction , (accessed on 22-02- 2015 )

Effects of Transport Limitations on Rates of Solid-Catalyzed Reactions, Available online: http://authors.library.caltech.edu /25070/7/FundChemReaxEngCh6.pdf (accessed on 18-03-2015).

Krishna, M. G; Joseph S; Supurna, S., “Brownian motion on a sphere: distribution of solid angles†J. Phys. A: Math. Gen., 33,5965–5971, 2000.

K. Schulten and I. Kosztin, Lectures in Theoretical Biophysics, Available online: www.ks.uiuc.edu/Services/Class/NSM.pdf (accessed on 22-10-2014)

Bülow, Thomas, "Spherical Diffusion". Technical Reports (CIS). Paper 718, 2001.http://repository.upenn.edu/cis_reports/718

Abhijit G., Joseph S., Supurna S., A “Gaussian" for diffusion on the sphere, Available online: arXiv:1303.1278 [cond.mat.stat-mech], (accessed on 22-03-2015).

Chapman-Kolmogorov equation for continuous paths: Fokker-Plank equation, Available online: http://www.pd.infn.it/~orlandin/fisica_sis_comp/fokker_plank.pdf.(accessed on 12-09-2014)

Pabitra, N.S., Non-Gaussian Statistics and Anomalous Diffusion in Porous Media, Available online: http://biomedphys.sgu.ru/Files/LIB/Springer/Processes%20with%20LongRange%20Correlatio/10.NonGaussian%20Statistics %20and%20Anomalous%20diffusion %20in%20Porous%20Media.pdf (accessed on 22-10-2014)

Fabio M.; Kepa R-M. Stochastic simulations of minimal self-reproducing cellular systems, Available online: DOI: 10.1098/rstb .2007.2071 (accessed on 22-03-2015)

Gillespie, D.T., “A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22, 403–434, 1976, doi:10.1016/0021-9991(76)90041-3

Available online: http://www.pharmpress.com/files/docs/MolBiopharmaceutics_ sample.pdf (accessed on 18-03-2015)

Thielle Modulus, Available online: http://en.wikipedia.org/wiki/Thiele_modulus (accessed on 22-03-2015)




How to Cite

Egenti, N. F. (2016). Random Molecular Transport around Biological Membranes. Asian Journal of Applied Sciences, 4(4). Retrieved from https://www.ajouronline.com/index.php/AJAS/article/view/2583