On Quasi-Left Primary and Quasi-Primary Γ -ideals in Γ -AG-Groupoids

Pairote Yiarayong

Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand Email: pairote0027 [AT] hotmail.com

ABSTRACT— The purpose of this paper is to introduce the notion of a quasi-primary ideals in Γ -AG-groupoids, we study quasi-primary and quasi-left primary ideals in Γ -AG-groupoids. Some characterizations of quasi-primary and quasi-left primary ideals are obtained. Moreover, we investigate the relationships between quasi-primary and quasi-left primary ideals in Γ -AG-groupoids. Finally, we obtain the necessary and sufficient conditions of a quasi-primary ideal to be a quasi-left primary ideal in Γ -AG-groupoids.

Keywords— Γ -AG-groupoid, Γ -LA-semigroup, Γ -ideal, quasi-primary ideal, quasi-left primary ideal.

1. INTRODUCTION

Abel-Grassmann's groupoid (AG-groupoid) is a generalization of semigroup theory with wide range of usages in theory of flocks [6]. The fundamentals of this non-associative algebraic structure were first discovered by Kazim and Naseeruddin (1972). A groupoid S is called an AG-groupoid if it satisfies the left invertive law:

$$(ab)c = (cb)a$$

for all $a, b, c \in S$. It is interesting to note that an AG-groupoid with right identity becomes a commutative monoid [5]. This structure is closely related to a commutative semigroup. Because of containing a right identity, an AG-groupoid becomes a commutative monoid [5]. A left identity in an AG-groupoid is unique [5]. It lies between a groupoid and a commutative semigroup with wide range of applications in theory of flocks [6]. Ideals in AG-groupoids have been discussed in [4]. In 1981, the notion of Γ -semigroups was introduced by M. K. Sen. A groupoid S is called a Γ -AG-groupoid if it satisfies the left invertive law:

$$(a\gamma b)\delta c = (c\gamma b)\delta a$$

for all $a,b,c \in S$ and $\gamma,\delta \in \Gamma$ [3]. This structure is also known as a left almost semigroup (LA-semigroup). In this paper, we are going to investigate some interesting properties of recently discovered classes, namely Γ -AG-groupoid S always satisfies the Γ -medial law:

$$(a\gamma b)\beta(c\delta d) = (a\gamma c)\beta(b\delta d)$$

for all $a,b,c,d \in S$ and $\gamma,\beta,\delta \in \Gamma$ [3], while a Γ -AG-groupoid S with left identity e always satisfies Γ -paramedial law:

$$(a\gamma b)\beta(c\delta d) = (d\gamma c)\beta(b\delta a)$$

for all $a,b,c,d \in S$ and $\gamma,\beta,\delta \in \Gamma$ [3]. Recently T. Shah and I. Rehman have discussed Γ -Ideals and Γ -Bi-Ideals in Γ -AG-Groupoids.

In this paper we characterize the Γ -AG-groupoid. We investigate the relationships between quasi-primary and quasi-left primary ideals in Γ -AG-groupoids.

2. BASIC PROPERTIES

In this section we refer to [10, 11, 12, 13] for some elementary aspects and quote few definitions, and essential examples to step up this study. For more details we refer to the papers in the references.

Example 2.1. [10, 11] (1). Let S be an arbitrary AG-groupoid and Γ any non-empty set. Define a mapping $S \times \Gamma \times S \to S$; by $a\gamma b = ab$ for all $a,b \in S$ and $\gamma \in \Gamma$. It is easy to see that S is a Γ -AG-groupoid.

(2). Let $\Gamma = \{1, 2, 3\}$. Define a mapping $\square \times \Gamma \times \square \to \square$ by $a\gamma b = b - \gamma - a$ for all $a, b \in \square$ and $\gamma \in \Gamma$ where "-" is a usual subtraction of integers. Then \square is a Γ -AG-groupoid.

Lemma 2.2. [10, 11] Every Γ -AG-groupoid is Γ -medial.

Lemma 2.3. [10, 11] Let S be a Γ -AG-groupoid with a left identity, then $a\gamma(b\alpha c) = b\gamma(a\alpha c)$ for all $a,b,c \in S$ and $\gamma,\alpha \in \Gamma$.

Definition 2.4. [10, 11] Let S be a Γ -AG-groupoid. A nonempty subset A of S is called a sub Γ -AG-groupoid of S if $A\Gamma A \subseteq A$.

Definition 2.5. [10, 11] A sub Γ -AG-groupoid A of S is called a left (right) Γ -ideal of S if $S\Gamma A \subseteq A$ ($A\Gamma S \subset A$) and is called an Γ -ideal if it is left as well as right Γ -ideal.

Lemma 2.6. [10, 11] If a Γ -AG-groupoid S has a left identity, then every right Γ -ideal is a left Γ -ideal.

Lemma 2.7. [10, 11] If A is a left Γ -ideal of a Γ -AG-groupoid S with left identity, and if for any $a \in S$, there exists $\gamma \in \Gamma$, then $a\gamma A$ is a left Γ -ideal of S.

Lemma 2.8. [10, 11] If A is a proper right (left) Γ -ideal of a Γ -AG-groupoid S with left identity e, then $e \notin A$.

Lemma 2.9. [13] If S is a Γ -AG-groupoid with left identity e, then $a\gamma b = a\beta b$ for all $a,b \in S$ and $\gamma,\beta \in \Gamma$.

Lemma 2.10. Let S be a Γ -AG-groupoid with left identity, and let B be a left Γ -ideal of S. Then $A\Gamma B = \{a\gamma b : a \in A, b \in B, \gamma \in \Gamma\}$ is a left Γ -ideal in S, where $\emptyset \neq A \subseteq S$.

Lemma 2.11. Let S be a Γ -AG-groupoid with left identity and let $a \in S$. Then

$$a^{2}\gamma S = \left\{ a^{2}\gamma s = \left(a\beta a \right) \gamma s : s \in S \right\}$$

is a Γ -ideal in S, where $\gamma, \beta \in \Gamma$.

Lemma 2.12. Let S be a Γ -AG-groupoid with left identity, and let A be a left Γ -ideal of S. Then $(A:\gamma:r)$ is a left Γ -ideal in S, where $(A:\gamma:r) = \{a \in S: r\gamma a \in A\}$.

Remark. Let S be a Γ -AG-groupoid and let A be a left Γ -ideal of S. It is easy to verify that $A \subseteq (A:\gamma:r)$.

Lemma 2.13. Let S be a Γ -AG-groupoid with left identity, and let A,B be left Γ -ideals of S. Then $(A:\Gamma:B)$ is a left Γ -ideal in S, where $(A:\Gamma:B) = \{r \in S : B\Gamma r \subseteq A\}$.

Remark. Let S be a Γ -AG-groupoid and let A,B,C be left Γ -ideals of S. It is easy to verify that $(A:\Gamma:C)\subseteq (A:\Gamma:B)$, where $B\subseteq C$.

3. QUASI-LEFT PRIMARY AND LEFT PRIMARY Γ -IDEALS

We start with the following theorem that gives a relation between Γ -primary and quasi Γ -primary ideal in Γ -AG-groupoid. Our starting points are the following definitions:

Definition 3.1. A Γ -ideal P is called left quasi-primary if $A\Gamma B \subseteq P$ implies that

$$(((A\Gamma A)\Gamma A)\Gamma...)\Gamma A = A^n \subseteq P \text{ or } (((B\Gamma B)\Gamma B)\Gamma...)\Gamma B = B^n \subseteq P$$

for some positive integer n, where A and B are two Γ -ideals of S.

Definition 3.2. A left Γ -ideal P is called quasi-left primary if $A\Gamma B \subseteq P$ implies that

$$(((A\Gamma A)\Gamma A)\Gamma...)\Gamma A = A^n \subseteq P \text{ or } (((B\Gamma B)\Gamma B)\Gamma...)\Gamma B = B^n \subseteq P$$

for some positive integer n, where A and B are two left Γ -ideals of S.

Remark. It is easy to see that every quasi-left primary ideal is quasi-primary.

Lemma 3.3. If S is a Γ -AG-groupoid with left identity, then a left Γ -ideal P of S is quasi-left primary if and only if $a\gamma(S\beta b) \subseteq P$ implies that

$$(((a\delta a)\delta a)\delta...)\delta a = a^n \in P \text{ or } (((b\delta b)\delta b)\delta...)\delta b = b^n \in P$$

for some positive integer n, where $\gamma, \beta, \delta \in \Gamma$ and $a, b \in S$.

Proof. Let P be a quasi-left primary left ideal of a Γ -AG-groupoid S with left identity. Now suppose that $a\gamma(S\beta b) \subseteq P$. Then by Definition of left Γ -ideal, we get $S\Gamma(a\gamma(S\beta b)) \subseteq S\Gamma P \subseteq P$ that is,

$$S\Gamma(a\gamma(S\beta b)) = (S\delta S)\Gamma(a\gamma(S\beta b))$$

$$= (S\delta a)\Gamma(S\gamma(S\beta b))$$

$$= (S\delta a)\Gamma((S\Gamma S)\gamma(S\beta b))$$

$$= (S\delta a)\Gamma((b\beta S)\gamma(S\Gamma S))$$

$$= (S\delta a)\Gamma((b\beta S)\gamma(S))$$

$$= (S\delta a)\Gamma((S\beta S)\gamma b)$$

$$= (S\delta a)\Gamma(S\gamma b)$$

for all $\delta \in \Gamma$. Since $S\Gamma(a\gamma(S\beta b)) \subseteq P$ and $S\Gamma(a\gamma(S\beta b)) = (S\delta a)\Gamma(S\gamma b)$, we have $(S\delta a)\Gamma(S\gamma b) \subseteq P$ so that $a^n = (e\delta a)^n \in (S\delta a)^n \subseteq P$ or $b^n = (eb)^n \in (S\gamma b)^n \subseteq P$, for some positive integer n. Conversely, assume that if $a\gamma(S\beta b) \subseteq P$ implies that $a^n \in P$ or $b^n \in P$ for some positive integer n, where $\gamma, \beta \in \Gamma$ and $a,b \in S$. Suppose that $A\Gamma B \subseteq P$, where A and B are left Γ -ideals of S such that $A \not\subset P$. Then there exists $x \in A$ such that $x^n \not\in P$, for all positive integer n. Now

$$x\gamma(S\beta y)\subseteq A\Gamma(S\Gamma B)\subseteq A\Gamma B\subseteq P$$
,

for all $y \in B$. So by hypothesis, $y^n \in P$ for all $y \in B$ implies that $B^n \subseteq P$. Hence P is quasi-left primary ideal in S.

Lemma .3.4. If S is a Γ -AG-groupoid with left identity, then a left Γ -ideal P of S is quasi-left primary if and only if $(S\gamma a)\delta(S\beta b)\subseteq P$ implies that $a^n\in P$ or $b^n\in P$ for some positive integer n, where $\gamma,\beta,\delta\in\Gamma$ and $a,b\in S$.

Proof. Let P be a quasi-left primary ideal of a Γ -AG-groupoid S with left identity. Now suppose that $(S\gamma a)\delta(S\beta b)\subseteq P$. Then by Definition of left ideal, we get

$$(S\gamma a)\delta(S\beta b) = (S\gamma S)\delta(a\beta b)$$

$$= S\delta(a\beta b)$$
$$= a\delta(S\beta b)$$

that is $a\delta(S\beta b) = (S\gamma a)\delta(S\beta b) \subseteq P$. By Lemma 3.3, we have $a^n \in P$ or $b^n \in P$ for some positive integer n. Conversely, assume that if $(S\gamma a)\delta(S\beta b) \subseteq P$, then $a^n \in P$ or $b^n \in P$ for some positive integer n, where $\gamma, \beta, \delta \in \Gamma$ and $a, b \in S$. Let $a\delta(S\beta b) \subseteq P$. Now consider

$$a\delta(S\beta b) = (S\gamma a)\delta(S\beta b) \subseteq P$$
.

By using given assumption, if $a\delta(S\beta b) \subseteq P$, then $a^n \in P$ or $b^n \in P$ for some positive integer n. Then by Lemma 3.3, we have P is a quasi-left primary ideal in S.

Theorem 3.5. If S is a Γ -AG-groupoid with left identity, then a left Γ -ideal P of S is quasi-left primary if and only if $a\gamma b \in P$ implies that $a^n \in P$ or $b^n \in P$ for some positive integer n, where $\gamma \in \Gamma$ and $a,b \in S$.

Proof. Let P be a left Γ -ideal of a Γ -AG-groupoid S with left identity. Now suppose that $a\gamma b \in P$. Then by Definition of left ideal, we get

$$(S\alpha a)\beta(S\gamma b) = (S\alpha S)\beta(a\gamma b)$$

$$= S\beta(a\gamma b)$$

$$\subseteq S\Gamma P$$

$$\subset P.$$

By Lemma 3.4, we have $a^n \in P$ or $b^n \in P$ for some positive integer n. Conversely, the proof is easy.

Theorem 3.6. Let S be a Γ -AG-groupoid, and let A be a quasi-left primary ideal of S. Then $(A:\gamma:r)$ is a quasi-left primary ideal in S, where $\gamma \in \Gamma$ and $r \in S$.

Proof. Assume that A is a quasi-left primary ideal of S. By Lemma 2.12, we have $(A:\gamma:r)$ is a left ideal in S. Let $a\beta b \in (A:\gamma:r)$. Suppose that $b^n \notin (A:\gamma:r)$, for all positive integer n. Since $a\beta b \in (A:\gamma:r)$, we have $r\gamma(a\beta b) \in A$ so that $a\gamma(r\beta b) \in A$. By Theorem 3.5, we have $a^n \in A \subseteq (A:\gamma:r)$ or $(r\beta b)^n \in A$, for some positive integer n. Therefore $a^n \in (A:\gamma:r)$ and hence $(A:\gamma:r)$ is a quasi-left primary ideal in S.

Theorem 3.7. Let S be a Γ -AG-groupoid with left identity e and let P be a quasi-primary ideal of S. If $\left(S\gamma a^2\right)\alpha\left(S\beta b^2\right)\subseteq P$, then $a^n\in P$ or $b^n\in P$, for some positive integer n, where $\gamma\in\Gamma$ and $a,b\in S$.

Proof. Let P be a quasi-primary ideal of a Γ -AG-groupoid S with left identity. Suppose that $b^n \notin P$, for all positive integer n. Now assume that $(S\gamma a^2)\alpha(S\beta b^2)\subseteq P$. Then by Definition of left Γ -ideal, we get

$$(S\gamma a^{2})\alpha(S\beta b^{2}) = ((S\beta b^{2})\gamma a^{2})\alpha S$$

$$= ((a^{2}\beta b^{2})\gamma S)\alpha S$$

$$= (S\gamma S)\alpha(a^{2}\beta b^{2})$$

$$= a^{2}\alpha((S\gamma S)\beta b^{2})$$

$$= a^{2}\alpha((b^{2}\gamma S)\beta S)$$

$$= (b^{2}\gamma S)\alpha(a^{2}\beta S)$$

 $= a\lambda a$

that is $(b^2\gamma S)\alpha(a^2\beta S)\subseteq P$. By Lemma 2.11, we have $a^2\beta S$ and $b^2\gamma S$ are Γ -ideals in S so that

$$= (e\chi a)\lambda a$$

$$= (a\chi a)\lambda e$$

$$= (a\lambda a)\beta e$$

$$= a^{2}\beta e \in a^{2}\beta S \subseteq P$$
or
$$b^{2} = b\lambda b$$

$$= (e\chi b)\lambda b$$

$$= (e\chi b)\lambda b$$

$$= (b\chi b)\lambda e$$

$$= (b\lambda b)\gamma e$$

$$= b^{2}\gamma e \in b^{2}\gamma S \subseteq P$$

 a^2

for all $\chi \in \Gamma$. Therefore $a^n \in P$, for some positive integer n.

Corollary 3.8. Let S be a Γ -AG-groupoid with left identity, and let P be a quasi-primary ideal of S. If $b^2\gamma a^2\in P$, then $a^n\in P$ or $b^n\in P$, for some positive integer n.

Proof. Let P be a quasi-primary ideal of an AG-groupoid S with left identity. Suppose that $b^n \notin P$, for all positive integer n. Now assume that $b^2 \gamma a^2 \in P$. Then by Definition of left Γ -ideal, we get

$$(a^{2}\beta S)\alpha(b^{2}\gamma S) = b^{2}\alpha((a^{2}\beta S)\gamma S)$$

$$= b^{2}\alpha((S\beta S)\gamma a^{2})$$

$$= (S\beta S)\alpha(b^{2}\gamma a^{2})$$

$$= S\alpha(b^{2}\gamma a^{2})$$

$$\subseteq S\Gamma P$$

$$\subseteq P$$

that is $(a^2\beta S)\alpha(b^2\gamma S)\subseteq P$. It is easy to see that $a^n\in P$, for some positive integer n.

Definition 3.9. A Γ -AG-groupoid S is called Γ -AG-3-band if its every element satisfies

$$a\alpha(a\beta a) = (a\alpha a)\beta a = a$$
.

Proposition 3.10. [13] Every left identity in a Γ -AG-3-band is a right identity.

Lemma 3.11. [13] If a Γ -AG-3-band S has a left identity, then every left Γ -ideal is a Γ -ideal.

Theorem 3.12. Let S be a Γ -AG-3-band with left identity. Then P is a quasi-left primary ideal in S if and only if S is a quasi-primary ideal in S.

Proof. The proof is straightforward.

ACKNOWLEDGEMENT

The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

REFERENCES

- [1] Kazim M.A., Naseeruddin M., "On almost semigroups", The Alig. Bull. Math., vol. 2, 1-7, 1972.
- [2] Khan M., Naveed Ahmad, "Characterizations of left almost semigroups by their ideals", Journal of Advanced Research in Pure Mathematics, vol. 2, no. 3, 61-73, 2010.
- [3] Khan M., Amjid V., Faisal, "Characterizations of intra-regular Γ -AG**-groupoids by the properties of their Γ -ideals", http://arxiv.org/abs/1011.2845 (accessed: 4 September 2013).
- [4] Mushtaq Q., Yousuf S.M., "On LA-semigroup defined by a commutative inverse semigroup", Math. Bech., vol. 40, 59 62, 1988.
- [5] Mushtaq Q., Yousuf S.M., "On LA-semigroups", The Alig. Bull. Math., vol. 8: 65-70, 1978.
- [6] Naseeruddin M., Some studies in almost semigroups and flocks, Ph.D. thesis: Aligarh Muslim University: Aligarh: India, 1970.

- [7] Protic P.V., Stevanovic N. "AG-test and some general properties of Abel-Grassmann's Groupoids", PU. M. A., vol. 4, no. 6, 371 383, 1995.
- [8] Sen M.K., Saha N.K., "On Γ -semigroups I, Bull. Cal. Math. Soc. vol. 78, 180-186, 1986.
- [9] Sen M.K., "On Γ -semigroups", Proceeding of International Symposium on Algebra and Its Applications, Decker Publication: New York, 301-308, (1981).
- [10] Shah T., Rehman I. "On M-systems in Γ -AG-groupoids", Proc. Pakistan Acad.Sci., vol. 47, no. 1, 33-39, 2010.
- [11] Shah T., Rehman I., "On Γ -Ideals and Γ -bi-Ideals in Γ -AG-Groupoids", International Journal of Algebra, vol. 4, no. 6, 267 276, 2010.
- [12] Shah T., Rehman I., "Decomposition of locally associative Γ -AG-groupoids", Novi Sad J. Math., vol. 43, no. 1, 1-8, 2013.
- [13] Yiarayong Y., "Some Basic Properties of Γ -Primary and Quasi Γ -Primary Ideals in Γ -AG-groupoids", Suranaree J. Sci. Technol, vol. 21, no. 4; 2014.