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ABSTRACT— In this paper, we study completely primary and weakly completely primary ideals in  -near-rings. 

Some characterizations of completely primary and weakly completely primary ideals are obtained. Moreover, we 

investigate relationships completely primary and weakly completely primary ideals in  -near rings. Finally, we 

obtain necessary and sufficient conditions of a weakly completely primary ideal to be a completely primary ideals in 

 -near rings. 
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1. INTRODUCTION 

  Throughout this paper, by a  -near-ring N  we always mean a zero-symmetric near-ring with identity 1. For 

basic definitions in near-rings one may refer [20]. In 1970 W. L. M. Holcombe was introducing the notions of (0, 1, 2)-

prime ideals of a near ring. In 1977 G. Pilz, was introducing the notion of prime ideals of a near ring. In 1988 

N.J.Groenewald was introducing the notions of completely (semi) prime ideals of a near ring. In 1991 N.J.Groenewald 

was introducing the notions of 3-(semi) prime ideals of a near ring . In 2003 D. D. Anderson and E. Smith defined 

weakly prime ideals in commutative rings, an ideal P  of a ring R  is weakly prime if 0 ab P   implies a P or 

.b P  

 The concept of  -near ring, a generalization of both the concepts near-ring and  -ring was introduced by 

Satyanarayana [21]. Later, several authors such as Booth and Booth, Groenewald [4, 5, 6] studied the ideal theory of  -

near rings. Groenewald [12] introduced semi uniformly strongly prime near-rings. 

 In this paper we study completely primary and weakly completely primary ideals in  -near-rings. Some 

characterizations of completely primary and weakly completely primary ideals are obtained. Moreover, we investigate 

relationships completely primary and weakly completely primary ideals in  -near rings. Finally, we obtain necessary 

and sufficient conditions of a weakly completely primary ideal to be a completely primary ideals in  -near rings. 

 

2. BASIC RESULTS 
 In this section we refer to [24, 25] for some elementary aspects and quote few theorem and lemmas which are 

essential to step up this study. For more details we refer to the papers in the references. 

 

Definition 2.1. [25] All near-rings considered in this paper are left distributive. A Γ-near-ring is a triple  , , ,N    

where 

 (i)  ,N  is a group (not necessarily abelian); 

 (ii)   is a non-empty set of binary operations on N  such that for each ,    , ,N  is a right near -ring 

and; 

 (iii)     ,a b c a b c     for all , ,a b c N  and , .    
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  -near rings generalize near-rings in the sense that every near-ring N  is a  -near ring, with  ,    where 

  is the multiplication defined on .N  

 

Definition 2.2. [25] Let N  be a  -near ring, then a normal subgroup A  of  , ,N    is said to be 

 (i) left ideal if    –  ,m n a m n A    for all , ,a A   and , ;m n N  

 (ii) right ideal if ,a n A   for all , ,a A   and ;n N  

 (iii) ideal if it is both left and right ideal of .N  

 

 If A  is an ideal of ,N  then it is denoted by .A N  The ideal generated by ,a N  is denoted by .a   

 

Lemma 2.3. [25] Let A  be a left ideal of a  -near ring .N  Then  :A n


 is a left ideal of ,N  where 

   : : .A n m N m n A


    

 

Lemma 2.4. Let A  be an ideal of  , , .N    Then is a  -near-ring under the operations: For all ,a b N  

     a A b N a b A       and      .a A b N ab A     

 

Lemma 2.5. Let A  and B  be ideals of  , , .N    Then    / / .A B A B A B    Furthermore, if ,A B  then 

   / / / / .N A B A N B  

 

Definition 2.6. Let  , ,N    be a  -near-ring and A  be a subset of  N . We write  

 : kA a N a A    for some positive integer .k  

  

Definition 2.7. A ideal P  of a  -near-ring N  is called a completely primary ideal if for ,a b N  and   such 

that a b P   implies that 
na P  or ,b P  for some positive integer .n  

 

Definition 2.8. A ideal P  of a  -near-ring N  is called a weakly completely primary ideal if for ,a b N  and 

  such that 0  a b P  implies that 
na P  or ,b P  for some positive integer .n  

  

 Clearly every completely primary ideal is weakly completely primary and  0  is always weakly completely 

primary ideal of .N  The following example shows that a weakly completely primary ideal need not be a completely 

primary ideal in general. 

 

Example 2.9. Let {0,  ,  ,  ,  ,1,2,3}N a b c d  and  0,1 .  Define addition and multiplication in N  as follows: 

 

+ 0 1 2 3 a  b  c  d  

0 0 1 2 3 a  b  c  d  

1 1 2 3 0 d  c  a  b  

2 2 3 0 1 b  a  d  c  

3 3 0 1 2 c  d  b  a  

a  a  d  b  c  2 0 1 3 

b  b  c  a  d  0 2 3 1 

c  c  a  d  b  1 3 0 2 

d  d  b  c  a  3 1 2 0 
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  0 1 2 3 a  b  c  d  

0 0 0 0 0 0 0 0 0 

1 0 1 2 3 a  b  c  d  

2 0 2 0 2 2 2 0 0 

3 0 3 2 1 b  a  c  d  

a  0 a  2 b  a  b  c  d  

b  0 b  2 a  b  a  c  d  

c  0 c  0 c  0 0 0 0 

d  0 d  0 d  2 2 0 0 

 

Then  , ,N    is a  -near ring. Here  0,  c  is a weakly completely primary ideal, but not a completely primary, 

since  2 2 0 0,  c .     

 

3. MAIN RESULTS 
 

 We start with the following theorem that gives a relation between weakly completely primary and completely 

primary ideals in a  -near-ring. Our starting points is the following lemma: 

 

Lemma 3.1. If N  is a  -near-ring with identity, then a b a b   for all ,a b N  and , .    

Proof. Let N  be a  -near-ring and e  be the identity of ,N  and let , , ,a b N     therefore we have 

    a b  ( )a e b     

   
  

( )a e b   

     .a b  

Hence .a b a b   

 

Lemma 3.2. Let N  be a  -near-ring, and let A  be a left ideal of .N  Then  : :A B  is a left ideal in ,N  where 

   : : : .A B n N n B A      

Proof. Let N  be a  -near-ring, and let A  be a left ideal of .N  Suppose that n N  and  , : : .m n A B   Then 

m B A   and n B A   so that 

  .n m B n B m B A        

Therefore  : : .n m A B    For  : :a A B   and 
 

,n N  
 

                 n a n B    n B a B n B       

         n B A n B  

     A  

since A  is a left ideal of .N  Therefore,  : : .n a n A B     Thus  : :A B is a normal subgroup of .N  Let 

 , , : :m n N a A B    and β .   Then  

         m n a m n B         m n a B m n B       

         m n a B m n B        

        m n B a B m n B         

        m n B a B m n B        

     .A  

Thus    : : .m n a m n A B      Hence  : :A B  is a left ideal in .N   
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Theorem 3.3. Let N  be a  -near-ring, and let A  be an ideal of .N  If A  is a weakly quasi completely primary (quasi 

completely primary) ideal of ,N  then  : :A B  is a weakly quasi completely primary (quasi completely primary) 

ideal in ,N  where .B A  

Proof. Let N  be a  -near-ring, and let A  be a weakly completely quasi primary ideal of .N  Suppose that 

 0 : :m n A B    and  : : ,km A B   for all positive integer .k  Then 
 

   0 .m n B m n B A       

By Definition of weakly quasi completely primary ideal, we get 
km A  or n B A   for some positive integer k  so 

that  : : .n A B   Hence  : :A B  is a weakly quasi completely primary ideal in .N     

 

Corollary 3.4. Let N  be a  -near-ring, and let A  be a weakly quasi completely primary (quasi completely primary) 

ideal of .N  Then  :A m


 is a weekly quasi completely primary (quasi completely primary) ideal in ,N  where 

.m N A   

Proof. This follows from Theorem 3.3.  

      

Theorem 3.5. Let N  be a  -near-ring, and let P  be an ideal of .N  If P  is a weakly completely primary ideal that is 

not completely primary. Then 0.P   

Proof. Let N  be a  -near-ring with identity. First, we prove that 
2 0.P   Suppose that 

2 0P   we show that P  is 

weakly completely primary. Let a b P  , where , , .a b N    If 0,a b   then either  

a P  or b P  

since P  is weakly completely primary ideal. So suppose that 0.a b   If 0,P b   then there is an element p  of 

P  such that 0,p b   so that  

 0    ,p b p a b P       

and hence P  weakly completely primary ideal gives either p a P    or .b P  As p a P    and 

p P P   we have either a P  or .b P  So we can assume that 0.P b   Similarly, we can assume that 

0.P a   Since 
2 0,P   there exist ,c d P  such that   0.c d  Then  

       ,a c b d P    

so either   p c P   or   ,q d P   and hence either p P  or .q P  Thus P  is completely primary ideal. 

 Clearly, 0 .P  As 
2 0,P   we get 0,P   hence 0,P   as required.   

   

 

Corollary 3.6. Let N  be a  -near-ring, and let P  an ideal of .N  If 0,P   then P  is completely primary if and 

only if P  is weakly completely primary. 

Proof. This follows from Theorem 3.5.       

 

Lemma 3.7. Let N  be a  -near-ring with identity, and let P  be a proper ideal of N . If  P  is a weakly completely 

primary ideal of ,N  then    : :   0 : : ,P N a P N a       where .a N P     

Proof. Let N  be a  -near-ring with identity, and let P  be a weakly completely primary ideal of .N  Clearly,  

    0 : : : : .P N a P N a       

For the other inclusion, suppose that  : : ,m P N a    so that  

  .m N a P    
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If  0 ,m N a    then N a P   since P  is weakly completely primary. If  0 ,m N a    then 

 0 : :m N a    so we have the equality.    

 

Corollary 3.8. Let N  be a  -near-ring with identity, and let P  be a proper ideal of N . If P  is a weakly completely 

primary ideal of ,N  then    : :   0 : : ,P a P a     where .a N P     

Proof. This follows from Lemma 3.7.       

 

Corollary 3.9. Let N  be a  -near-ring with identity, and let P  be a proper ideal of N . If 

   : :   0 : : ,P N a P N a       then ( : : ) P N a P    or ( : : )  (0 : : ),    P N a N a where 

.a N P   
 

Proof. This follows from Lemma 3.7.       

 

Theorem 3.10. Let N  be a  - near-ring with identity, and let P  be a proper ideal of .N  If ( : : ) P n P   or 

( : : )  (0 : : ),P n n    then P  is a weakly completely primary ideal of ,N  where .n N P     

Proof. Let N  be a  -near-ring with identity, and let P  be a proper ideal of .N  Suppose that Let 0 ,m n P   

where , .m N P     Then  

   : :   0 : :m P n P n      

by Corollary 3.9 hence m P  since 0m n  , as required.     

 

Lemma 3.11. Let 1 2  ,N N N   where each iN  is a  -near-ring with identity. Then the following hold: 

 (i) If A  is an ideal of 1,N  then 2 2.A N A N    

 (ii) If A  is an ideal of 2 ,N  then 
1 1 .N A N A    

Proof. The proof is straightforward.  

 

 

Theorem 3.12. Let 1 2  ,N N N   where each iN  is a  -near-ring with identity. If P  is a weakly completely 

primary (completely primary) ideal of 1,N  then 2P N  is a weakly completely primary (completely primary) ideal of 

.N  

Proof. Suppose that 1 2  ,N N N   where each iN  is a  -near-ring with identity and P  is a weakly completely 

primary ideal of 1.N  Let 
 

      20 , ,   , N ,a b c d a c b d P       

where    , , , ,a b c d N    so either a P  or c P  since P  is weakly completely primary. It follows that 

either 

  2 2,a b P N P N     or   2, N .c d P   

By Definition of weakly completely primary ideal, we have 2P N  is a weakly completely primary ideal of .N  

     

 

Corollary 3.13. Let 1 2  ,N N N   where each iN
 
is a  -near-ring with identity. If P  is a weakly completely 

primary (completely primary) ideal of 2 ,N  then 1N P  is a weakly completely primary (completely primary) ideal of 

.N  

Proof. This follows from Lemma 3.12.       
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Corollary 3.14. Let 

1

  ,
n

i

i

N N


  where each iN  is a  -near-ring with identity. If P  is a weakly completely 

primary (completely primary) ideal of ,jN  then 
1 2 1j j nN N P N N         is a weakly completely primary 

(completely primary) ideal of .N  

Proof. This follows from Theorem 3.12 and Corollary 3.13.    

 

Theorem 3.15. Let 1 2  ,N N N   where each iN  is a  -near-ring with identity. If P  is a weakly completely 

primary ideal of ,N  then either   0P   or P  is completely primary. 

Proof. Let 1 2  ,N N N   where each iN  is a  -near-ring with identity and let 1 2P P N   be a weakly 

completely primary ideal of .N  We can assume that 0.P   So there is an element  ,a b  of P  with 

   , 0,0 .a b  Then      0,0 ,1 1,  ,a b P   

wehere ,   gives either  

 ,1  a P  or   1 21,  .b P P N    

If   ,1  ,a P  then 1 2N .P P   We show that 1P  is completely primary  hence P  is weakly completely primary by 

Theorem 3.12. Let 1, c d P  where 1, .c d N  Then  

       0,0 ,1 ,1   ,1   c d c d P , 

so either  ,1c P  or   1 2,1   d P P N  and hence either 1c P  or 1.d P  By a similar argument, 1 2N P  

is completely primary.      

 

Proposition 3.16. Let A P  be proper ideals of a  -near-ring .N  Then the following hold: 

 (i) If P  is weakly completely primary (completely primary), then /P A  is weakly completely primary 

(completely primary). 

 (ii) If A  and /P A  are weakly completely primary (completely primary), then P  is weakly completely 

primary (completely primary). 

Proof. (i) Let    0       / ,      a A b A a b A P A  where , , a b N  so .ab P  If  

  0 ,  a b A  then     0,  a A b A  a contradiction. So if P  is weakly completely primary, then either 

a P  or ,b P  hence either  /a A P A  or  / ,b A P A   as required. 

(ii) Let 0 , a b P  where ,a b N , so     / .  a A b A P A  For , a b A  if  A  is weakly completely 

primary, then either a A P  or .b A P P    So we may assume that . a b A  Then either /a A P A   

or / .b A P A   It follows that either a P  or b P  as needed.     

 

 

Theorem 3.17. Let P  and Q  be weakly completely primary ideals of a  -near-ring N  that are not completely 

primary. Then P Q  is a weakly completely primary ideal of .N  

Proof. Since    /  / ,P Q Q Q P Q    we get that ( ) /P Q Q  is weakly completely primary by Proposition 

3.16 (i). Now the assertion follows from Proposition 3.16 (ii).      
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