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ABSTRACT—In this paper we characterize the classical primary radical of submodules and classical primary 
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radical primary, and primary of submodules, respectively. Moreover, we investigate relationships between classical 

primary radical and radical primary submodules. 
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1. INTRODUCTION 

Throughout this paper all rings are commutative with identity and all modules are unitary. we recall that a proper 

ideal P  of R  is called a primary ideal if ,ab P  where , ,a b R  implies that either a P  or ,nb P  for some 

positive integer .n  The notion of primary ideal was generalized by Fuchs (1947) through defining an ideal P  of a ring 

R  to be its quasi-primary if its radical is a prime ideal, i.e., if ,ab P  where , ,a b R  then either 
na P  or 

,nb P  for some positive integer .n  A proper submodule N  of an R -module M  is a primary submodule of M  if 

for m M  and r R  such that ,rm N  then m N  or   : | ,nr N M a R a M N   
 

for some 

positive integer n   

An R -module M  is a primary module if every proper submodule N  of M  is a primary submodule of M.  A 

classical primary submodule in M  as a proper submodule N  of M  such that if ,abK N  where ,a b R  and 

,K M  then either aK N  or ,nb K N  for some positive integer .n  Clearly, in case ,M R  where R  is any 

commutative ring, classical primary submodules coincide with primary ideals. The idea of decomposition of submodules 

into classical primary submodules was introduced by Baziar and Behboodi (2009). The primary radical of N  in ,M  

denoted by   ,Mprad N  is defined to be the intersection of all primary submodules containing .N  Should there be no 

primary submodule of M  containing ,N  then we put   .Mprad N M  Radicals have been investigated in a number 

of papers, for example, in ([1], [2]). A classical primary radical of N  in ,M  denoted by  . ,Mc prad N  is defined to 

be the intersection of all classical primary submodules containing .N  Should there be no classical primary submodule of 

M  containing ,N  then we put  . .Mc prad N M  
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In this paper we characterize the classical primary radical of submodules and classical primary radical formula of 

modules over commutative ring with identity. Moreover, we investigate relationships between classical primary radical 

and radical primary submodules. 

2. BASIC RESULTS  

In this section we introduce the concept of the primary radical and give some useful properties about it.  

 

Definition 2.1. [6] A proper ideal P  of R  is called a primary ideal if ,ab P  where , ,a b R  implies that either 

a P  or ,nb P  for some positive integer .n  

 

Lemma 2.2. If P  is a primary ideal of R  and let ,n nr c P  for all positive integers ,n  then   .
n

rc P   

Proof. Suppose that   ,
nn nr c rc P   for some positive integers .n  Since P  is a primary ideal of ,R  it follows that 

nr P  or   ,
s

ns nr r P   for some positive integers .s  This is a contradiction to the fact that , ,n nr c P  for all 

positive integer .n  Therefore,   .
n

rc P  

 

Lemma 2.3. [6] Let M  be an R -module and N  be a proper submodule of M.  Then N  is classical primary if and 

only if for every submodule K  of M  such that K N,(N : K)  is a primary ideal of R.  

Proof. The proof is obvious.   

 

Lemma 2.4. [14] Let M  be a Noetherian R -module and N  be a proper submodule of M.  The following statements 

are equivalent: 

(1) N  is a classical primary submodule. 

(2) For every a,b R  and m M,  abm N,  it implies that either am N  or 
n b m N  for some positive 

integer n.  

(3) For every m M - N,  it is a primary ideal of R.   

 

Definition 2.5. [1] The primary radical of N  in M,  denoted by  Mprad N ,  is defined to be the intersection of all 

primary submodules of  M containing N.  If there is no primary submodule of M  containing N,  then 

Mprad (N) = M.  

 

3. SOME BASIC PROPERTIES OF THE PRIMARY SUBMODULES  

 

The results of the following lemmas seem to be at the heart of the theory of primary submodules; these facts will be 

used so frequently that normally we shall make no reference to this lemma. 

 

Lemma 3.1. If N  is a proper submodule of an R -module M  and P  is a proper ideal of ,R  then
 

  , | ,PM N N P x M cx PM N      where .c R P   

Proof. Let .x PM N   Then ,x pm k   where ,p P m M   and .k N  There exists  1 R P   so that 

1 .x x pm k PM N      

 It follows that  ,x N P and hence
  , .PM N N P   
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Lemma 3.2. If N  is a proper submodule of an R -module M  and P  is a proper ideal of ,R  then  ,N P  is a 

submodule of .M  

Proof. It follows from Lemma 3.1 that  , .N P   To show that submodule properties of  ,N P  hold, let r R  

and
  , , .x y N P

 
There exists 

1 2,c c  with
 1 2,c c R P   such that

 1 2, .c x c y PM N   Then 
1 1 1 1c x p m n 

 

and 2 2 2 2 ,c y p m n   where 1 2 1 2, , ,p p P m m M   and
 1 2, .n n N  Now consider 

   
c c x y

1 2
( )   c c x c c y

1 2 1 2
     

      c c x c c y
2 1 1 2
( )       

        c p m n c p m n
2 1 1 1 1 2 2 2
( ) ( )     

        c p m c n c p m c n
2 1 1 2 1 1 2 2 1 2

    

          c p m c p m c n c n PM N
2 1 1 1 2 2 2 1 1 2

( ) ( )  

and 

  1
c rx   

1
( )r c x       

     
1 1 1

( )r p m n       

     
1 1 1

.rp m rn PM N      

Therefore  ( , )x y N P and ( , ).rx N P  Hence( , )N P  is a submodule of .M     

    

Lemma 3.3. If N  is a proper submodule of an R -module M  and P  is a primary ideal of ,R  then ( , )N P M  or 

( , )N P  is a primary submodule of M .  

Proof. Suppose that ( , )N P M . We will show that ( , )N P  is a primary submodule of M . By Lemma 3.2, we have 

( , )N P  is a submodule of M .  To see the prime property of ( , ),N P  let r R  and m M  such that
 

( , ).rm N P  

We will prove that  

( , )m N P  or
 

 ( , ).rM N P  

Since
 

( , ),rm N P  there exists c  with   ,c R P such that   .crm PM N  We have 2 cases to consider; r P  

and  .r P  

Case 1. If
 

 ,r P  then by the definition of ( , ),N P
 

we have    rM PM PM N N P( , ).  Therefore 

 ( , ).rM N P  

Case 2. If  ,r P  then  .cr P  Thus ( , ).m N P  

Therefore ( , )N P  is a primary submodule of .M   

 

Corollary 3.4. If N  is a proper submodule of an R -module M  and let P  be a primary ideal of ,R  then ( , )N P M  

or ( , )N P  is a cliassical primary submodule of M .  

Proof. The proof is obvious.  
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4.  SOME BASIC PROPERTIES OF THE CLASSICAL PRIMARY SUBMODULES  

 

  Before theorizing of the theorem of the relationship between primary radicals radical and classical primary 

radical submodules of submodules of an R -module M.  Our starting point is the following definition: 

 

Definition 4.1. The classical primary radical of N  in M,  denoted by  Mc.prad N ,  is defined to be the intersection 

of all classical primary submodules of M containing N.  If there is no classical primary submodule of M  containing 

N,  then 
Mc.prad (N) = M.  

 

Lemma 4.2. If N  and K  are submodules of an R -module M  such that N K , then 
M M

c prad N c prad K. ( ) . ( ).  

Proof. If there is no classical primary submodule of M containing ,K  then
 

  .   .
M

c prad K M  Since . ( )
M

c prad N  

is a submodule of ,M  we have  

 . ( ) . ( ).
M M

c prad N M c prad K  

If there exists a classical primary submodules of M containing ,K  then . ( )
M

c prad K  is a submodule of ,M  with 

 . ( ).
M

K c prad K  Since  ,N K we have  

 . ( ).
M

N c prad K  

Therefore . ( ) . ( ).
M M

c prad N c prad K    

 

Corollary 4.3. If N  is a submodule of an R -module ,M  then  . ( ) . ( ) .
M M

c prad N c prad M M  

Proof. It follows from Lemma 4.2.     

 

Proposition 4.4. Let N  and K  be submodules of an R -module M . Then  

  (1)  . ( )
M

N c prad N , 

  (2) . ( . ( )) . ( )
M M M

c prad c prad N c prad N , 

  (3)   . ( ) . ( ) . ( )
M M M

c prad N K c prad N c prad K , 

  (4)   . ( ) . ( ) . ( ).
M M M

c prad N K c prad N c prad K  

Proof. (1) Obviously, N P  for every classical primary submodule .P  

(2) Since  . ( ),
M

N c prad N  by Lemma 4.2, 

. ( ) . ( . ( )).
M M M

c prad N c prad c prad N  

We will show that . ( . ( )) . ( ).
M M M

c prad c prad N c prad N  If there is no classical primary submodule of 

M containing ,N  then . ( ) .
M

c prad N M  Thus 

. ( . ( )) . ( ).
M M M

c prad c prad N c prad N  

If there exists classical primary submodules of M  containing ,N  then there exists classical primary submodule ,W  

with  .N W  Then by the definition of . ( ),
M

c prad N . ( ) .
M

c prad N W  It follows that  

. ( . ( )) . ( )
M M M

c prad c prad N c prad N  

and hence  . ( . ( )) . .
M M M

c prad c prad N c prad N  

 

 



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 02 – Issue 05, October 2014 
 

Asian Online Journals (www.ajouronline.com)  774 

 

(3) Since  N K N  and   ,N K K  by Lemma 4.2,
  

 . ( ) . ( )
M M

c prad N K c prad N  

and
 

 . ( ) . ( ).
M M

c prad N K c prad K  

Therefore   . ( ) . ( ) . ( ).
M M M

c prad N K c prad N c prad K
 

(4) We will show that   . ( ) . ( ) . ( ).
M M M

c prad N K c prad N c prad K  It is clear that
  

  . ( ) . ( ),
M M

N K c prad N c prad K  

so that   . ( ) . ( ) . ( ).
M M M

c prad N K c prad N c prad K  On the other hand, we will show that 

  . ( ) . ( ) . ( ).
M M M

c prad N c prad K c prad N K  

Since  N N K  and   ,K N K
 
we have  

 . ( ) . ( )
M M

c prad N c prad N K  

and 

 . ( ) . ( ).
M M

c prad K c prad N K  

Thus
 

  . ( ) . ( ) . ( ).
M M M

c prad N c prad K c prad N K Hence   . ( ) . ( ) . ( ).
M M M

c prad N K c prad N c prad K  

 

Lemma 4.5. If N and K  are submodules of an R -module M  such that  ,N K then . ( ) . ( ).
K M

c prad N c prad N  

Proof. If there is no classical primary submodule of M  containing ,N  then
 

. ( )
M

c prad N M . Since . ( )
K

c prad N
 
is 

a submodule of ,K  we have  

  . ( ) . ( ).
K M

c prad N K M c prad N  

There exists a classical primary submodules of M  containing ,N  then . ( )
M

c prad N  is a submodule of ,M  with 

 . ( ).
M

N c prad N  Let W  be a classical primary submodule of M  containing .N  We have 2 cases to consider; 

W K  and W K .Ú  

 Case 1.
 

W K .  Then is a classical primary submodules of K  containing ,N  so that 
K

w rad N W. ( ) .
 

 Case 2. W K .Ú  It is clear that K W  is a classical primary submodule of .K  Since   ,N K W  we have 

  . ( ) .
K

c prad N K W W  

 Hence, . ( ) . ( ).
K M

c prad N c prad N    

 

Theorem 4.6. Let N  be a proper submodule of an R -module .M  Then . ( ) {( , ) |
M

c prad N N P P  is a primary 

ideal of R}.  

Proof. Let B N P P{( , ) |  is a primary ideal of R}.  We show that . ( ) .
M

c prad N B  Let  . ( )
M

m c prad N  

and let N P B( , ) .  Then by Corollary 3.4, N P M( , )  or N P( , )  is a classical primary submodule of .M  

 Case 1. If   N P M, ,  then it is trivial that ( , ).m K P  

 Case 2. If N P( , )  is a classical primary submodule of M  and   N PM N N P( , ),  then m N P( , ).  

Therefore
 

. ( ) {( , ) |
M

c prad N N P P  is a primary ideal of R}.      
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Lemma 4.7. Let N  be a proper submodule of an R -module .M  Then ( ) {( , ) |
M

prad N N P P is a primary ideal 

of }.R  

Proof. Let B N P P{( , ) | is a primary ideal of }.R  We will show that  ( ).
M

B prad N  Let L  be a primary 

submodule of ,M  containing N  and let  .m B  Since L  is a primary submodule of ,M  we have ( : )L M  is primary 

ideal of .R  There exists c  with   ( : )c R L M
 
such that  ( : ) .cm L M M N  Therefore    ,cm hs k  where 

( : ),h L M s M   and  .k N  Since hM L  and ,N L  we have hs L  and .k L  Then  .cm L  Since
 

ÚcM L  and L  is a primary submodule of ,M  we have  .m L  It follows  ( )
M

m prad N  and hence
 

 ( ).
M

B prad N  Next, we will show that
 

( ) .
M

prad N B  Let  ( )
M

m prad N  and let N P B( , ) .  Then by 

Lemma 3.3 N P M( , )  or N P( , )  is a primary submodule of .M  

 Case 1. If   N P M, ,  then it is trivial that m N P( , ).  

 Case 2. If N P( , )  is a primary submodule of M  and   N PM N N P( , ),  then m N P( , ).  Therefore 

 ( )
M

B prad N  and hence ( )
M

prad N N P P{( , ) |  is a primary ideal of R}.   

 

Theorem 4.8. Let N be a proper submodule of an R -module M .  Then . ( ) ( ).
M M

c prad N prad N  

Proof. It follows from Theorem 4.6 and Lemma 4.7.  
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