A Beta-glucosidase with Beta-xylosidase Activity from the Digestive Juice of the Land Crab Cardisoma armatum

Claude K. Ya, Fankroma M. T. Koné, Sophie N. Gnangui, Soumaila Dabonné, Lucien P. Kouamé

Abstract


A bifunctional beta-glucosidase/beta-xylosidase enzyme from land crab Cardisoma armatum was purified to homogeneity by anion-exchange, size-exclusion, cation-exchange and hydrophobic interaction chromatographies and characterized to explore his suitability in biotechnology and to elucidate his role in biodegradation of plant material. The enzyme showed a single protein band and its relative molecular weight was estimated to be 69.81 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 115.24 kDa by gel filtration, indicating that the enzyme should be monomeric or homo-oligomeric enzyme. The specific activities towards para-nitrophenyl-beta-D-glucopyranoside and para-nitrophenyl-beta-D-xylopyranoside were 74.16 ± 2.10-4 and 88.60 ± 2.10-3 U/mg of protein, respectively. This enzyme was optimally active at pH 5.6 and at 60 °C, and was stable at pH range 4.6 to 6.6. The only substrates that were hydrolyzed by the purified enzyme were para-nitrophenyl-beta-D-glucopyranoside, para-nitrophenyl-beta-D-xylopyranoside, xylobiose, cellobiose and cellodextrins. The enzyme was specific for substrates with a beta-(1,4)-glucosidic linkages and was an exo-glycosidase. The catalytic efficiencies values for beta-D-1,4-glucoside and beta-D-1,4-xyloside were respectively 1666.67 and 132.89 mM-1s-1. The purified enzyme is a beta-glucosidase with beta-xylosidase activity, which takes effect after actions of endo-enzymes and exo-enzymes and it hydrolyzes cellobiose and xylobiose in glucose and xylose, respectively. However, the beta-glucosidase/beta-xylosidase catalyzed both hydrolysis and transglycosylation.

 


Keywords


Bifunctional enzyme, β-glucosidase, β-xylosidase, land crab, Cardisoma armatum, transglycosylation

Full Text:

PDF

References


Zabi G. F. S., and Le Loeuf P., Revue des connaissances sur la faune benthique des milieux margino-littoraux d’Afrique de l’Ouest. Première partie: Biologie et écologie des espèces, Revue Hydrobiologie Tropicale, 25, 209-251, 1992.

Cuesta J. A., and Anger K., Larval morphology and salinity tolerance of a land crab from West Africa, Cardisoma armatum (Brachyura: Grapsoidea: Gecarcinidae), Journal of Crustacean Biology, 25, 640-654, 2005.

Linton S. M., and Greenaway P., Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes, The Journal of Experimental Biology, 207, 4095-4104, 2004.

Greenaway P., and Raghaven S., Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in a rain forest, Physiological zoology, 71, 36-44, 1998.

Allardyce B. J., and Linton S. M., Purification and characterisation of endo-beta-1,4-glucanase and laminarinase enzymes from the gecarcinid land crab Gecarcoidea natalis and the aquatic crayfish Cherax destructor, The Journal of Experimental Biology, 211, 2271-2287, 2008.

Allardyce B. J., Linton S. M., and Saborowski R., The last piece in the cellulase puzzle: the characterisation of beta-glucosidase from the herbivorous gecarcinid land crab Gecarcoidea natalis, The Journal of Experimental Biology, 213, 2950-2957, 2010.

Harris D., and DeBolt S., Synthesis, regulation and utilization of lignocellulosic biomass, Plant Biotechnology Journal, 8, 244-262, 2010.

Lynd L. R., Weimer P. J., van Zyl W. H., and Pretorius I. S., Microbial cellulose utilization: fundamentals and biotechnology, Microbiology and Molecular Biology Reviews, 66, 506-577, 2002.

Ward O. P., and Moo-Young M., Enzymatic degradation of cell wall and related plant polysaccharides, Critical Reviews in Biotechnology, 8, 237-274, 1989.

Knob A., Terrasan C. R. F., and Carmona E. C., Beta-xylosidases from filamentous fungi: an overview, World Journal of Microbiology and Biotechnology, 26, 389-407, 2010.

Zimbardi A. L. R. L., Sehn C., Meleiro L. P., Souza F. H. M., Masui D. C., Nozawa M. S. F., Guimarães L. H. S., Jorge J. A., and Furriel R. P. M., Optimization of beta-Glucosidase, beta-Xylosidase and Xylanase Production by Colletotrichum graminicola under Solid-State Fermentation and Application in Raw Sugarcane Trash Saccharification, International Journal of Molecular Sciences, 14, 2875-2902, 2013.

Bayer E. A., Chanzy H., Lamed R., and Shoham Y., Cellulose, cellulases and cellulosomes, Current Opinion in Structural Biology, 8, 548-557, 1998.

Martin M. M., and Martin J. S., Cellulose Digestion in the Midgut of the Fungus-Growing Termite Macrotermes natalensis: The Role of Acquired Digestive Enzymes, Science, 199, 1453-1455, 1978.

Martin M. M., and Martin J. S., The distribution and origins of the cellulolytic enzymes of the higher termite Macrotermes natalensis, Physiological zoology, 52, 11-21, 1979.

Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J., Protein measurement with the Folin phenol reagent, The Journal of Biological Chemistry, 193, 265-275, 1951.

Fagbohoun J. B., Karamoko Y., Dabonné S., Kouadio E. J. P., Due E. A., and Kouamé L. P., Characterization of the dual activity of an endo-beta-D-glycosidase from salivary glands of Macrotermes subhyalinus little soldier against carboxymethylcellulose and xylan, International Journal of Biomolecules and Biomedicine, 2, 8-14, 2012.

Kunst A., Draeger B., and Ziegenhorn J., Colorimetric methods with glucose oxidase and peroxidase, In: Methods of Enzymatic Analysis, 3rd Ed, HU Bergmeyer, Weinheim: Verlag Chemie, 3, 178-185, 1984.

Bernfeld P., Amylase α and beta, In: Methods in Enzymology, Academic Press, 1, 149-158, 1955.

Laemmli U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, 1970.

Bruckner H., Estimation of monosaccharides by orcinol-sulfuric acid reaction, Biochemistry Journal, 60, 200-205, 1955.

Lineweaver H., and Burk D., The Determination of Enzyme Dissociation Constants, Journal of the American Chemical Society, 56, 658-666, 1934.

Binate S., N’dri D., Toka M., and Kouame L. P., Purification and characterization of two beta-glucosidases from termite workers Macrotermes bellicosus (Termitidae, Macrotermitinae), Journal of Applied Biosciences, 10, 461-470, 2008.

Koffi Y. G., Konan K. H., Kouadio E. J. P., Dabonné S., and Kouamé L. P., Purification and biochemical characterization of beta-glucosidase from cockroach Periplaneta americana, Journal of Animal and Plant Sciences, 13, 1747-1757, 2012.

Pinphanichakarn P., Tangsakul T., Thongnumwon T., Talawanich Y., and Thamchaipenet A., Purification and characterization of beta-xylosidase from Streptomyces sp. CH7 and its gene sequence analysis, World Journal of Microbiology and Biotechnology, 20, 727-733, 2004.

Saha B. C., Purification and properties of an extracellular beta-xylosidase from a newly isolated Fusarium proliferatum, Bioresource Technology, 90, 33-38, 2003.

Riou C., Salmon J. M., Vallier M. J., Gunata Z., and Barre P., Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae, Applied and Environmental Microbiology, 64, 3607-3614, 1998.

Umezurike G. M., The beta-glucosidase in the gut contents of the snail Achatina achatina. Energy-dependent modification of structure and activity, Biochemistry Journal, 157, 381-387, 1976.

Dharmawardhana D. P., Ellis B. E., and Carlson J. E., A beta-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin, Plant Physiology, 107, 331-339, 1995.

Daroit D. J., Simonetti A., Hertz P. F., and Brandelli A., Purification and characterization of an extracellular beta-glucosidase from Monascus purpureus, Journal of Microbiology and Biotechnology, 18, 933-941, 2008.

Marana S. R., Terra W. R., and Ferreira C., Midgut beta-D-glucosidases from Abracris flavolineata (Orthoptera: Acrididae). Physical properties, substrate specificities and function, Insect Biochemistry and Molecular Biology, 25, 835-843, 1995.

Michelin M., Peixoto-Nogueira S. C., Silva T. M., Jorge J. A., Terenzi H. F., Teixeira J. A., and Polizeli Mde L., A novel xylan degrading beta-D-xylosidase: purification and biochemical characterization, World Journal of Microbiology and Biotechnology, 28, 3179-3186, 2012.

Zhou J., Bao L., Chang L., Liu Z., You C., and Lu H., Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans, Letters in Applied Microbiology, 54, 79-87, 2012.

Shi H., Li X., Gu H., Zhang Y., Huang Y., Wang L., and Wang F., Biochemical properties of a novel thermostable and highly xylose-tolerant beta-xylosidase/alpha-arabinosidase from Thermotoga thermarum, Biotechnology for Biofuels, 6, 27, 2013.

Hong S. Y., An C. L., Cho K. M., Lee S. M., Kim Y. H., Kim M. K., Cho S. J., Lim Y. P., Kim H., and Yun H. D., Cloning and Comparison of Third beta-Glucoside Utilization (bglEFIA) Operon with Two Operons of Pectobacterium carotovorum subsp. carotovorum LY34, Bioscience, Biotechnology and Biochemistry, 70, 798-807, 2006.

Kaur K., Bhupinder S. C., Badhan A. K., Ghatora S. K., and Harvinder S. S., Purification and characterization of beta-glucosidase from Melanocarpus sp. MTCC 3922, Electronic Journal of Biotechnology, 10, 260-270, 2007.

Copa-Patiño J. L., and Broda P., A Phanerochaete chrysosporium beta-D-glucosidase/beta-D-xylosidase with specificity for (1 → 3)-beta-D-glucan linkages, Carbohydrate Research, 253, 265-275, 1994.

Scrivener A. M., and Slaytor M., Properties of the endogenous cellulase from Panesthia cribrata saussure and purification of major endo-beta-1,4-glucanase components, Insect Biochemistry and Molecular Biology, 24, 223-231, 1994.

Rizzatti A. C. S., Jorge J. A., Terenzi H. F., Rechia C. G. V., and Polizeli M. L. T. M., Purification and properties of a thermostable extracellular beta-D-xylosidase produced by a thermotolerant Aspergillus phoenicis, Journal of Industrial Microbiology and Biotechnology, 26, 156-160, 2001.


Refbacks

  • There are currently no refbacks.