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________________________________________________________________________________________ 

ABSTRACT— A new approach to the defensive location problem (DLP) is proposed which aims to generalize the 

problem into a global optimization problem, hence the name “generalized DLP” (GDLP). In DLP, a decision maker 

locates defensive facilities in a network in order to prevent their enemies from reaching an important site called a 

core. The fact that whether or not a defensive facility is located on a given vertex of the network leads to formulating 

DLP as a bi-level 0-1 programming problem. In GDLP, on the other hand, the defensive capacity allocated to vertices 

of the network can be any real number in a continuous interval. This gives rise to the formulation of GDLP as a 

global constraint optimization problem. Furthermore, simple but efficient heuristic solution method based on 

Improved Electromagnetism-like Mechanism tailored for GDLPs is proposed. The efficiency of the proposed solving 

methods is then shown by applying to some numerical examples of GDLP. 

Keywords— competitive facility location, defensive location problem, constraint global optimization, heuristic methods, 

improved electromagnetism-like mechanism. 

________________________________________________________________________________________ 

1. INTRODUCTION 

Facility location problems (FLP) are a class of mathematical programming problems which aims to locate some 

facilities in a plane or on a network under some criteria. For a detailed survey on FLPs, see [10, 25]. In an especial class 

of FLPs, facilities are located in accordance with the location of other competitive facilities on a network. This problem 

is called competitive facility location problem. There has been extensive study of this class of FLPs so far. (See e.g., [9, 

11, 12, 18, 23] and references therein). This class of problems has also been extended using fuzzy logic. Some interesting 

fuzzy studies of competitive facility location problems can be found in [20 - 22].  

Recently a new form of competitive FLPs was introduced by Uno and Katagiri [19]. They called this new problem 

“defensive location problem” (DLP). In DLP, a decision maker (the defender) locates defensive facilities in order to 

prevent their enemies (the invader) from reaching an important site, called a core. 

The objective of the defender, therefore, is to stop the invader in a farther distance from the core. It is assumed that 

the region where the decision maker locates their defensive facilities is represented as a network and the core is a vertex 

in the network, and that the facility locater and their enemy are an upper and a lower level decision maker, respectively. 

Moreover, it is assumed that all defensive facilities have equal defensive capacities, so DLP is formulated as bi-level 0-1 

programming problems. 

The decision variables in DLP are 0 and 1 and also the defender can locates as many defensive facilities as the 

constrains are met. These features made DLP similar to 0-1 knapsack problem. This contributes to the possibility of using 

some efficient solution algorithms. The tailored Tabu search algorithm proposed by Uno and Katagiri [19] has been 

proved to be quite promising for DLP. Furthermore, Uno and Kato [24] developed a stochastic version of DLP in which 

the location and the energy of the invader lacks certainty. They used an interactive fuzzy method to solve this problem.  

In this paper, we present a different approach towards formulating DLP which leads to a global optimization problem. 

The initial motivation of the new approach is taking into consideration the real-world applications of DLP. In real-world 

applications, a decision maker may be able to equip their defensive facilities in order to obtain certain defensive 

capacities. For instance, consider the problem of defending a strategic site as a DLP. A defender may have defensive 

facilities with different capacities, so they should be able to decide how much defensive capacity to allocate to each of 
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the facilities. In other words, the only different assumption in our approach is that the defensive facilities do not 

necessarily have equal defensive capacities and can be equipped by the defender to have a capacity which is a real 

number in a continuous interval. We call our proposed approach generalized defensive location problem (GDLP). Note 

that with this assumption, DLP is actually a particular case of GDLP.  

 

To approach a more efficient formulation for GDLP, we also assume that the defender has a total defensive capacity, 

each fraction of which can be allocated to each vertex. This total capacity can be interpreted as the maximum defensive 

capacity of the defender and/or the maximum financial ability of the defender to equip their facilities to reach certain 

defensive capacities and etc. Regarding these assumptions, we develop DLP into GDLP which is formulated as a global 

programming problem.  

 

The new assumptions in a GDLP made it more efficient to formulate and solve defensive location problems. In other 

words, if the defender can locate facilities with different defensive capacities, they can defend the core more efficiently; 

that is, stop the invader in a farther distance from the core. This is well demonstrated in the following example which is 

shown in Figure 1. In this example, we consider a network with 8 vertices and 10 edges and the initial energy of the 

invader is assumed to be 10 units. Also, the core and the invader are assumed to be located on the 1st and 8th vertices, 

respectively. The weights of the edges are also shown in the picture.  

 

 

Figure 1 – advantage of GDLP over DLP 

 

We can see that, in this example, with a fixed total defensive capacity, formulating the problem in the form of a 

GDLP is more efficient than DLP. To show this, we assume that the total defensive capacity of the defender is 6 units. If 

we model the problem in the form of a DLP (0-1 programming), we have to locate facilities with equal capacities on the 

network, while in the form of GDLP we can locate facilities with different capacities. Using the same notations for the 

GDLP problem given in the next section, Table I shows some different locations and their objective function values, 

including the best function value, for DLP formulation and the best decision of the defender and its corresponding 

objective function value for the GDLP formulation.  

Table 1 – Some decision vectors and their corresponding objective function values for DLP and GDLP formulations 

Formulation Decision Vector of the Defender Objective Function Value 

DLP (0,1,1,1,1,1,1)x  ( , ) 4.8defF x y  

(0,2,0,0,2,2,0)x  ( , ) 4.8defF x y  

(0,0,1.5,1.5,0,1.5,1.5)x  ( , ) 4.8defF x y  

(0,0,0,0,6,0,0)x  ( , ) 4.8defF x y  

GDLP (0,0,1.5,0,0,3,1.5)x  ( , ) 8.8defF x y  

 

As it is seen in the table, DLP formulation which is limited to the condition of having defensive facilities with equal 

capacities makes the objective function value worse than that of GDLP model. It is not difficult to investigate that in 

DLP model the farthest vertex to stop the enemy is 4th vertex, whereas by a GDLP modeling we can stop the enemy on 

5th vertex. Therefore, GDLP is more efficient than DLP to formulate the problem. Note that in Table I, some other 

decision vectors may be considered. However, the best objective value would remain the same in this case. 
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GDLP can be cast in a similar formulation as DLP. That is, a formulation based on Stackelberg equilibrium [15] can 

be proposed where two level of decision makers are involved in the model, the upper and the lower level of decision 

makers. This leads to a bi-level programming formulation for GDLP which will be discussed later in the paper. For 

details of bi-level programming, see [4, 5]. 

Then, we propose a simple and efficient solving method for GDLP. It is based on “electromagnetism-like 

mechanism”, first introduced by Birbil and Fang [3]. Since its introduction, EM has been mostly applied to global 

optimization in many applications [1, 2, 17]. The EM algorithm has been further improved recently for constraint 

optimization [26]. The efficiency of our proposed algorithm will be verified by applying it to some numerical examples 

of GDLP.  

The remaining structure of this article is organized as follows: in section 2, we represent GDLP as an optimal location 

problem on a network, and formulate it as a continuous programming problem. In order to solve GDLP, we propose an 

easy to implement solving method based on improved electromagnetism-like mechanism [26] in section 3. Furthermore, 

the efficiency of the proposed solution algorithm will be verified by applying to some numerical samples of GDLP and 

comparison to some other solution algorithms in section 4. Finally, Conclusion and future research is included in section 

5. 

2. FORMULATION OF GDLP 

As GDLP is a generalized model for DLP, we can formulate it in the same manner. However, we need to consider the 

new assumption added to GDLP. Just like DLP, in this new problem a decision maker locates defensive facilities in order 

to prevent their enemies from reaching the core. It is also assumed that the region where the decision maker locates their 

defensive facilities is represented as a network and the core is a vertex in the network, and that the defender and the 

invader are an upper- and a lower-level of decision maker, respectively.  

Using the same way in which Uno and Katagiri [19] formulated the DLP, let ( , )G V E represent the network, in 

which 1{ ,..., }nV v v
 
and  

, 1

n

ij i j
E e


  sets of vertices and edges. We show the core with c V . Without loss of 

generality, the location of the invader is assumed to be the 
thn  vertex nv , denoted by  . Let 0ijw   be the weight of 

the edge
ije E . Then the distance from v  to the core can be shown as follows: 

( ) min ,
vc

ij

c

ij
l L

e l

dis v w




           (1) 

 

where vcL is the set of all paths from v  to c .  According to the new assumption of the GDLP, the defender can locate 

each proportion of its total defensive capacity, which is a positive real number denoted by 0  , on each vertex except 

 , where the defender cannot locate any facilities. For {1,..., 1}i n  , let [0, ]ix   denote the defensive capacity of 

the facility which is located in the 
thi vertex. We show the decision vector of the defender with 1 1( ,..., )nx x x . Then 

we have: 
1

1

.
n

ix 


                      (2) 

On the other hand, the invader decides a path from   to c . To formulate objective functions of the defender and the 

invader, we use similar assumptions to those of DLP [13]: 

 The initial energy of the invader before leaving   is denoted by iniEng 0 . 

 The invader loses their energy based on the following cases:  

i. If the invader passes edge 
ije , their energy is reduced by 

ijw . 

ii.  Upon meeting a defensive facility on a vertex, the invader loses energy equal to the capacity of that 

defensive facility. Therefore, if the invader goes from iv to 
jv , the amount of energy they lose is: 

( , ) .red ij ij jEng e w x x                (3) 

 The invader dies once their energy becomes a negative number. 
 

As it can be seen, just the second assumption is different from DLP due to our new assumption in GDLP. 
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For the decision vector of the invader y , we use the same notations as in [13]. Let ( )tv Vy  be the 
tht vertex in y . 

Then, the invader can reach the ( )tv y
 
if the following energy of the invader is non-negative: 

 

 
1

( ) | ( ( ), ) ,
t

t k

ini red

k

Eng v Eng Eng e


 y x y x                  (4) 

 

in which ( )ke y  is the 
thk  edge in y . An objective of the invader is to reach the core c , or the nearest possible vertex to 

it. Thus, the objective function of the invader reads: 

 

 ( , ) min ( ) | ( | ) 0 .inv c

v
F dis v Eng v


 

y
x y x                (5) 

 

Taking GDLP as a zero-sum Stackelberg equilibrium game in the same way results in the following relation between the 

objective function of the defender, denoted by ( , )
def

F x y , and that of the invader: 

 

( , ) ( , ) 0 .def invF F x y x y              (6) 

 

Real-world limitations such as limitations of cost, work force and other possible considerations can also be cast into 

linear constraints for GDLP. Thus, the feasible set for the defender is as follows: 
 

 1[0, ] | .nD    x Ax b              (7) 

 

in which Ax b denotes the set of constraints. Note that relation (2) can be easily cast into this set of constraints. The 

feasible set for the invader, denoted by I , is a set of paths from 
 
to c . 

Therefore, the GDLP is formulated as follows: 

max ( , )

where solves 

min ( , )

subject to

,

.

def

def

F

F





x

y

x y

y

x y

x D

y I

             (8) 

3. SOLVING GDLP 

The new assumption for GDLP makes it a continuous optimization problem. There are, indeed, several algorithms 

which can be employed to solve GDLP. Addressing the real-world application of GDLP, we seek an algorithm which is 

not only simple and easy to implement but also efficient enough to solve both small and large-scale GDLP with 

satisfactory computational and memory requirement. 

 

The electromagnetism-like mechanism (EM) is a heuristic method for solving global optimization problems which is 

inspired by an analogy made between the mechanism of the convergence of the points to the one with the best function 

value and the attraction-repulsion mechanism of the electromagnetism theory. Birbil and Fang [3] showed that their 

introduced method is powerful yet easy for global optimization. EM was further improved for constraint optimization by 

Zhang, Li, Gao and Wu [26]. Dealing with a constraint optimization problem in case of GDLP, our proposed method 

involves use of improved total force calculation proposed in Improved EM (IEM) algorithm [26]. Moreover, the same 

feasibility and dominance rules aiming at satisfying the constraints efficiently have been employed here. However, we 

use a modified update procedure which is specifically tailored for GDLPs. 
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For the sake of comparison, we have employed two versions of IEM to solve the problem (9). One uses a simple local 

random search mechanism as suggested in [3], while the other uses a heuristic updating approach tailored for the GDLP. 

In the following we give a brief summary of the two versions of IEM employed for solving GDLP.   

4.1 IEM with local random search 

This is similar to method developed in [26]. The only difference is that here the movement probability is not 

introduced and instead the updating of the points is performed based on a random local search as in the original EM 

algorithm [3].  

In an overall view, IEM operates as follows: First it selects p  random points in the feasible region. Then, for each of 

these points, using a random local search procedure, it searches their local region to find a better value point if there is 

any, and update the points. Next, it assigns a value to each of the points. This value, which can be interpreted as 

electromagnetic charge of each point, is calculated using the following formula: 

        

1

( ) ( )
exp ,

( ( ) ( ))

best i
i

p
best j

j

f x f x
q n

f x f x


 
 

  
 

 
 


       (10) 

in which 
iq is the charge of the 

thi  point which is denoted by 
ix and 

bestx is the current best point , n  and m are the 

dimension of the problem and the number of points, respectively and exp( )x represents the exponential function. The 

idea is to allocate a larger value of charge to the point with better objective function values. This is clearly not the only 

way to express the charges of the points, but it was proved to be efficient [3]. 

After that, the total force exerted on each point is computed. As mentioned before, we use the simplified total force 

calculation proposed in [26] as follows: 

1, 2, 3

( ) ( ) ( )
,

( ) ( ) ( )

j i i j j ip
i

i j i j j i
j R R R

x x q q if f x f x
F

x x q q if f x f x

 


 

 
 
 

      (11) 

with 
iF being the total force on the 

thi point. 

And finally, all points, except the one with the best function value, are moved to the direction of the total force exerted 

on them by a random step length. This procedure will continue until a stopping criterion is met. The procedures of 

handling the constraints is also the same as that of proposed in [26]. 

  

4.2 IEM with Heuristic Update Procedure 

This version of EM follows the same principles as the one introduced by Birbil and Fang [1]. The only difference is 

in the updating procedure which takes place as the first step of the main iterative loop of the EM algorithm. Here we use 

a heuristic updating approach which is motivated by an important characteristic of the GDLP.  

The problem with the local random search is that it updates the points based on their objective function values. In 

other words, if the procedure finds a local point with a better objective function value, it replaces it with the current point. 

But computing the objective function value for GDLP means solving shortest path problems using Dijkstra algorithm 

with the mentioned computational complexity of O( log )r n n . This can be prohibitively expensive, especially for 

large-scale GDLP. Therefore, we propose a simple updating approach to replace the local random search process in the 

second step of the IEM algorithm.  

The idea is based on the fact that the more defensive capacity allocated to the network by the defender, the larger 

would be the value of the objective function. In fact, let 
1 1 1

1 1( ,..., )nx x  x D
 
and 

2 2 2

1 1( ,..., )nx x  x D
 
be two 
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decision vectors of the defender such that 

1

1

, ( 1,2)
n

j

i

i

x j




    and 
 

2 1 0, ( 1,..., 1)i ix x i n    . Then, we 

have the following relation: 

 
1 2( , ) ( , ).def defF Fx y x y          (12)  

Having this observation in mind, instead of doing a local random search, we add equal proportions of the unallocated 

defensive capacity to each of the vertices of the network. In other words, let 
1 1( ,..., ) , 1,...,j j j

nx x j p x
 
be the 

p  points at the beginning of the current iteration of EM. For each 1,...,j p , let  

1

1 0
1

n
j

i

i
j

x

n











 



. 

Then, we update the point 
1 1( ,..., )j j j

nx x x  to point 
1 1( ,..., )j j j

j n jx x   x . Relation (12) shows that this 

approach leads to points with larger or equal objective function values. Our computational results given in the next 

section prove that this simple updating heuristic improves the efficiency of the EM algorithm in terms of both objective 

function values and the speed of computations.  

5. NUMERICAL RESULTS AND DISCUSSION 

In this section, the computational results of applying two versions of the IEM algorithm on the relaxed form of GDLP 

(9) are presented. In order to investigate the efficiency of IEM algorithm, we employed two other methods to solve the 

GDLP. One is a continuous genetic algorithm (CGA) [6] and the other is a continuous variable neighborhood search 

method (CVNS) [16]. The methods are applied to 6 samples.  

We generated our sample problems in three sizes, small, medium and large, regarding the number of vertices of the 

network. The number of vertices (NoV) and edges (NoE), the initial energy of the invader (EoI), the total defensive 

capacity of the defender (CoD), the number of linear constraints ( m ) are given in Table II.  

Table 2 – Samples GDLP 

Problem NoV NoE EoI CoD m 

S_1 200 1970 200 100 50 

S_2 350 2450 300 150 50 

M_1 4000 24500 3000 500 50 

M_2 6500 32750 4000 600 50 

L_1 25000 42500 20000 1500 50 

L_2 80000 895000 30000 3000 50 

 

For other requirements of the problem, we have employed a prescription similar to that of Uno and Katagiri [13]. 

That is, the weights of edges are selected randomly from {1, 2,...,1000} .  In addition, the elements of the left-hand-side 

matrix A were randomly chosen from {1, 2,...,1000} and the elements of the right-hand-side vector b  are defined as 

follows: 

1

1

.
n

i i ij

j

b a




   
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in which , 1,..., ,i i m   are random numbers in (0,1) . 

Each of the methods are applied on each sample problem 10 times and then best (BOFV), worse (WOFV) and 

average (AOFV) objective function values, together with the average CPU times (AT), are reported in the following 

tables. Also all the solving algorithms stop if there are 5 consecutive iterations with the optimal objective function value 

unchanged. 

The results of applying two versions of IEM on GDLP are presented in Table 3 and Table 4.  The IEM method using 

local random search and IEM featuring our proposed updating approach are represented in the Tables as IEM-LRS and 

IEM-HU, respectively. Finally, the maximum number of local searches for IEM-LRS is set according our best 

experimental results in each sample. 

It is well observed from Table 3 and 4 that using our proposed updating procedure with the IEM algorithm results in 

the improvement of both the objective function values and the CPU time, with these improvements being much more 

significant for larger problems. 

Table 3 – Results of applying IEM with random local search to samples of GDLP 

Problem BOFV WOFV AOFV AT 

S_1 185 128 151.4 592.4 

S_2 315 123 228.6 726.1 

M_1 842 445 623.1 1262.1 

M_2 971 556 780.9 2112.8 

L_1 1748 832 1334.2 4389.6 

L_2 2533 1135 1893.8 10927.3 

 

Table 4 – Results of applying IEM heuristic update to samples of GDLP 

Problem BOFV WOFV AOFV AT 

S_1 192 165 185.5 356.3 

S_2 342 142 274.1 402.5 

M_1 911 552 796.2 869.1 

M_2 1294 629 990.2 1562.9 

L_1 2412 1280 2126.4 3426.5 

L_2 3302 1485 2863.8 8672.8 

 

The results of applying CVNS on GDLP are shown in Table 5. By our own experience from solving the samples 

more than 1000 times for each sample problem, in the reported results the number of neighborhood structures, maxk and 

the number of local searches in each neighborhood is set according our best experimental results in each sample during 

the 100 final reported runs. 
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Table 5 –– Results of applying CVNS to samples of GDLP 

Problem BOFV WOFV AOFV AT 

S_1 185 119 164.5 762.1 

S_2 322 128 231.1 843.8 

M_1 914 494 685.2 1619.7 

M_2 1002 512 712.4 2613.1 

L_1 2141 912 1436.8 6104.6 

L_2 2362 1098 1783.2 13311.6 

 

Although the CVNS algorithm works similar to IEM-LRS with regards to the objective function values, its time 

expense is much more than that of IEM-LRS. In addition, the CVNS performance is dramatically outperformed by the 

proposed IEM-HU. 

The results of applying CGA on GDLP are shown in Table 6. The necessary parameters for genetic algorithm, 

including the terminal generation, the probabilities of inversion, permutation and crossover, the generation gap and 

scaling parameters, are set based on our experience from solving the each sample more than 1000 times during the 100 

final reported runs. 

Table 6 – Results of applying CGA to samples of GDLP 

Problem BOFV WOFV AOFV AT 

S_1 173 108 120.5 863.1 

S_2 302 116 195.2 981.8 

M_1 801 312 517.8 1789.7 

M_2 901 512 603.5 3121.5 

L_1 1650 783 920.3 6632.8 

L_2 3156 1598 1208.5 150362.6 

 

The CGA algorithm is comparable with IEM-LRS in terms of best objective function values. However, a deeper look 

at the average objective function values column suggests that in most of the runs, it leads to a smaller value for the 

objective function. Furthermore, it is much more time consuming than both versions of IEM and CVNS. 

Overall, the best algorithm is IEM-HU. It provides promising results in terms of both the solution speed and the final 

objective function value, particularly for large scale problems. While taking more time, IEM-LRS does not work 

comparable to IEM-HU in the sense of objective function value, again particularly for large scale problems. Although  

CVNS seems to be comparable to, and in some cases better than, IEM_LRS in terms of objective function values, it is 

much more time consuming than both IEM algorithms, a factor which may take it out of the menu for medium and large 

scale problems. However, CVNS is outperformed by IEM-HU in all aspects. Finally, the CGA, with not much 

improvement to the objective function value yet being too slow, seems to be a good candidate to be labeled the most 

inefficient solving method among all four. 

6. CONCLUSION AND FUTURE RESEARCH 

The new development of defensive location problem is introduced and formulated as a continuous optimization 

problem, hence its name as “continuous defensive location problem” (GDLP). The key feature of this new development 

making it much more practical for real-world problems is that the capacity of the defensive facilities can be set to be any 
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fraction of a total defensive facility. Using this new assumption one could use the convenience of continuous 

optimization in terms of simplicity and computational requirements. A very simple yet efficient heuristic optimization 

algorithm based on improved EM is also proposed which uses a tailored updating procedure for GDLP. The comparison 

of the results of employing this simple algorithm with some famous and widely used optimization algorithms for global 

optimization, such as continuous versions of Variable Neighborhood Search and Genetic algorithms, shows the 

efficiency of the method, particularly when dealing with large scale GDLP.   

The future research in this field will be devoted to finding much more efficient algorithms for very large scale GDLP 

by employing more characteristics of the nature of the problem into the solution procedure. Developing the idea to multi-

objective defensive problem and finding efficient solving methods for that is also another open future research in this 

field. 
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