Dominating Sets and Domination Polynomial of Wheels

Sahib Sh. Kahat ${ }^{1}$, Abdul Jalil M. Khalaf ${ }^{22 *}$ and Roslan Hasni ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Computer Science
University of Kufa, Najaf, IRAQ.
${ }^{2}$ Department of Mathematics, Faculty of Mathematics and Computer Science
University of Kufa, Najaf, IRAQ.
E-mail: abduljaleel.khalaf \{at\} uokufa.edu.iq
${ }^{3}$ Department of Mathematics, Faculty of Science, UMT, Terengganu, MALAYSIA.

Abstract

Let $G=(V, E)$ be a simple graph. A set $D \subseteq V$ is a dominating set of G, if every vertex in $V-D$ is adjacent to at least one vertex in D. Let W_{n} be wheel with order n. Let W_{n}^{i} be the family of dominating sets of a wheels W_{n} with cardinality i, and let $d\left(W_{n}, i\right)=\left|W_{n}^{i}\right|$. In this paper, we construct W_{n}, and obtain a recursive formula for $d\left(W_{n}, i\right)$. Using this recursive formula, we consider the polynomial $D\left(W_{n}, x\right)=\sum_{i=1}^{n} d\left(W_{n}, i\right) x^{i}$, which we call domination polynomial of wheels and obtain some properties of this polynomial.

1. INTRODUCTION

Let $G=(V, E)$ be a simple graph of order $|V|=n$. A set $D \subseteq V$ is a dominating set of G, if every vertex in $V-D$ is adjacent to atleast one vertex in D. The domination number $\gamma(G)$ is the minimumcardinality of a dominating set in G. For a detailed treatment of thisparameter, the reader is referred to [5]. It is well known and generallyaccepted that the problem of determining the dominating sets of anarbitrary graph is a difficult one (see [3]). Alikhani and Peng foundthe dominating set and domination polynomial of cycles and certaingraph [1], [2]. Kahat and Khalaf. found the dominating set and domination polynomial of stars [4]. Let G_{n} be graph with order n and let G_{n}^{i} bethe family of dominating sets of a graph G_{n} with cardinality i and $\operatorname{let} d\left(G_{n}, i\right)=\left|G_{n}^{i}\right|$. We call the polynomial $D\left(G_{n}, x\right)=\sum_{i=\gamma(G)}^{n} d\left(G_{n}, i\right) x^{i}$, the domination polynomial of graph G [2]. Let W_{n}^{i} be the familyof dominating sets of a wheel W_{n} with cardinality i and let $\boldsymbol{d}\left(W_{n}, i\right)=\left|W_{n}^{i}\right|$. We call the polynomial $D\left(W_{n}, x\right)=\sum_{i=1}^{n} d\left(W_{n}, i\right) x^{i}$, thedomination polynomial of wheel.In the next section we construct the families of dominating setsof W_{n} with cardinality i by the families of dominating sets of $W_{n}-1, W_{n}-2$ and $W_{n}-3$ with cardinality $i-1$. We investigate the dominationpolynomial of wheel in Section 3.

As usual we use $\binom{n}{\boldsymbol{i}}$ for the combination n to \boldsymbol{i}, and we denote the set $\{\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}\}$ simply by $[\boldsymbol{n}]$

2. DOMINATING SETS OF WHEEL $\left(W_{n}\right)$

Let $W_{n}, n \geq 3$, be the wheel with n vertices $V\left(W_{n}\right)=[\mathrm{n}]$ and $E\left(W_{n}\right)=\{(1,2),(1,3), \ldots,(1, n),(2,3),(3,4), \ldots,(n-$ $1, n),(n, 2)\}$. Let W_{n}^{i} be the family of dominating sets of W_{n} with cardinality i. We shall investigate dominating sets of wheels. To prove our main results we need the following lemma:
Lemma 1 [4].
The following properties hold for all graph G.
(i) $\left|G_{n}^{n}\right|=1$
(ii) $\left|G_{n}^{n-1}\right|=n$
(iii) $\left|G_{n}^{i}\right|=0$ if $i>n$.
(iv) $\left|G_{n}^{0}\right|=0$

Theorem 1 [1] For every $n \geq 4, j \geq\left[\frac{n}{3}\right], d\left(C_{n}, j\right)=d\left(C_{n-1}, j-1\right)+d\left(C_{n-2}, j-1\right)+d\left(C_{n-3}, j-1\right)$
Theorem 2[4]Let S_{n} be star with order $n \geq 3$, then $d\left(S_{n}, i\right)=d\left(S_{n-1}, i\right)+d\left(S_{n-1}, i-1\right) \forall i \neq n-2$
Theorem 3Let W_{n} be star with order $n \geq 4$, then $d\left(W_{n}, i\right)=d\left(S_{n}, i\right)+d\left(C_{n-1}, i-1\right) \forall i \forall<n-1$

Proof. Let S_{n} be a star and $v \in V\left(S_{n}\right)$ such that v is center of S_{n}, let S_{n} be a spanning subgraph of W_{n}, and since $W_{n}-v=C_{n-1}$ then $S_{n} \cup C_{n-1}=W_{n}$, since $d\left(S_{n}, i\right)=\left|S_{n}^{i}\right|$, and $d\left(C_{n-1}, i\right)=\left|C_{n-1}^{i}\right|$, and $d\left(W_{n}, i\right)=\left|W_{n}^{i}\right|$, and since $d\left(W_{n}, n-1\right)=n$ and $d\left(W_{n}, n\right)=1$ (Lemma 1), then $d\left(W_{n}, i\right)=d\left(S_{n}, i\right)+d\left(C_{n-1}, i\right) \forall i<n-1$.
Theorem 4Let W_{n} be star with order $n \geq 4$, then $d\left(W_{n}, i\right)=d\left(W_{n-1}, i-1\right)+d\left(W_{n-2}, i-1\right)+d\left(W_{n-3}, i-1\right)+$ $\binom{n-4}{i-1}$
Proof. By Theorem 3, and by Theorem $2[4] d\left(S_{n}, i\right)=d\left(S_{n-1}, i\right)+d\left(S_{n-1}, i-1\right)=d\left(S_{n-2}, i\right)+d\left(S_{n-2}, i-1\right)+$ $d\left(S_{n-1}, i-1\right)=d\left(S_{n-3}, i\right)+d\left(S_{n-3}, i-1\right)+d\left(S_{n-2}, i-1\right)+d\left(S_{n-1}, i-1\right)$, and by Theorem $1[1], d\left(C_{n}, j\right)=$ $d\left(C_{n-1}, j-1\right)+d\left(C_{n-2}, j-1\right)+d\left(C_{n-3}, j-1\right)$, and since $d\left(S_{n-3}, i\right)=\binom{n-4}{i-1}$ and by Theorem 3, then

$$
d\left(W_{n}, i\right)=d\left(W_{n-1}, i-1\right)+d\left(W_{n-2}, i-1\right)+d\left(W_{n-3}, i-1\right)+\binom{\boldsymbol{n}-4}{\boldsymbol{i}-1}
$$

Using Theorem 3 and Theorem 4, we obtain the coefficients of $D\left(W_{n}, x\right)$ for $1 \leq n \leq 15$ in Table 1. Let $d\left(W_{n}, i\right)=$ $\left|W_{n}^{i}\right|$. There are interesting relationships between the numbers $d\left(W_{n}, i\right)(1 \leq i \leq n)$ inthe table.

j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n															
1	1														
2	2	1													
3	3	3	1												
4	4	6	4	1											
5	1	10	10	5	1										
6	1	10	20	15	6	1									
7	1	9	29	35	21	7	1								
8	1	7	35	63	56	28	8	1							
9	1	8	36	94	118	84	36	9	1						
10	1	9	39	120	207	201	120	45	10	1					
11	1	10	45	145	312	402	320	165	55	11	1				
12	1	11	55	176	429	693	715	484	220	66	12	1			
13	1	12	66	223	567	1074	1380	1191	703	286	78	13	1		
14	1	13	78	286	754	1565	2379	2535	1795	988	364	91	14	1	
15	1	14	91	364	1015	2212	3789	4954	4375	2863	1351	455	105	15	1

Table 2. $d\left(W_{n}, i\right)$ The number of dominating sets of W_{n} with cardinality i
In the following theorem, we obtain some properties of $d\left(W_{n}, i\right)$
Theorem 5 The following properties hold for every $n \in Z^{+}, n \geq 3$.

$$
\begin{aligned}
& d\left(W_{n}, 1\right)=1 \quad \forall n>4 . \\
& d\left(W_{n}, 2\right)=n-1, \forall n>7 \\
& d\left(W_{n}, n-2\right)=\binom{n}{2} \\
& d\left(W_{n}, n-3\right)=\binom{n}{3} \\
& d\left(W_{n}, n-4\right)=\binom{n}{4}-(\mathrm{n}-1) \\
& \gamma\left(W_{n}\right)=1 .
\end{aligned}
$$

vii. $\quad d\left(W_{n}, i\right)=\binom{n}{i}-\binom{n-\mathbf{1}}{i} \quad \forall i<\left\lceil\frac{n-1}{3}\right\rceil$
viii. $\quad d\left(W_{n}, i\right)=d\left(W_{n-1}, i-1\right)+d\left(W_{n-2}, i-1\right)+d\left(W_{n-3}, i-1\right) \forall i \geq n-2$
ix. $\quad d\left(W_{n}, i\right)=d\left(W_{n-1}, i-1\right)+d\left(W_{n-2}, i-1\right)+d\left(W_{n-3}, i-1\right)+1$ if $i=n-3$
proof Let W_{n} be a wheel and $v \in V\left(W_{n}\right)$ such that v is center of W_{n} then
(i) By Theorem $3 d\left(W_{n}, i\right)=d\left(S_{n}, i\right)+d\left(C_{n-1}, i-1\right)$, and since $d\left(S_{n}, 1\right)=1 \forall n>4[4]$, and $d\left(C_{n-1}, 1\right)=0 \forall n>4$ [1], then $d\left(W_{n}, 1\right)=1 \forall n>4$
(ii) Since $d\left(S_{n}, 2\right)=n-1 \forall n>3[4]$, and $d\left(C_{n-1}, 2\right)=0 \forall n>7$ [1], then $d\left(W_{n}, 2\right)=n-1 \forall n>7$
(iii) By Theorem 3, $d\left(W_{n}, n-2\right)=d\left(S_{n}, n-2\right)+d\left(C_{n-1}, n-2\right)$, and since $d\left(C_{n-1}, n-2\right)=(n-1), d\left(S_{n}, n-\right.$
2) $=\binom{n-1}{i-3}[1][4]$, then $d\left(W_{n}, n-2\right)=\binom{n-1}{n-3}-(n-1)=\frac{(n-1)(n-2)}{2}+(n-1)=\frac{n(n-1)}{2}=\binom{n}{2}$
(iv) By Theorem 3, $d\left(W_{n}, n-3\right)=d\left(S_{n}, n-3\right)+d\left(C_{n-1}, n-3\right)$, and since $d\left(C_{n-1}, n-3\right)=\binom{n-1}{2}, d\left(S_{n}, n-3\right)=$ $\binom{n-1}{n-4}$ [1] [4], then $d\left(W_{n}, n-3\right)=\binom{n-1}{n-4}-\binom{n-1}{2}=\frac{(n-1)(n-2)(n-3)}{6}+\frac{(n-1)(n-2)}{2}=\frac{n(n-1)(n-2)}{6}=\binom{n}{3}$
(v) By Theorem 3 and [1] [4], $d\left(W_{n}, n-4\right)=d\left(S_{n}, n-4\right)+d\left(C_{n-1}, n-4\right)=\binom{n}{n-4}-\binom{n-1}{n-4}+\frac{(n-5)(n-1) n}{6}=\binom{n}{4}-$ $\binom{n-1}{3}+\frac{(n-5)(n-1) n}{6}=\binom{n}{4}-\frac{(n-1)(n-2)(n-3)}{6}+\frac{(n-5)(n-1) n}{6}=\binom{n}{4}-(n-1)$
(vi) since $\{v\}$ is dominating set of $W_{n} \forall n \in Z^{+}$, then $\gamma\left(W_{n}\right)=1$.
(vii)By Theorem 3, $d\left(W_{n}, i\right)=d\left(S_{n}, i\right)+d\left(C_{n-1}, i\right)$, and sinced $\left(C_{n-1}, i\right)=0 \forall i<\left\lceil\frac{n-1}{3}\right\rceil[1]$, then $d\left(W_{n}, i\right)=\binom{n}{i}-$ $\binom{n-1}{i} \quad \forall i<\left\lceil\frac{n-1}{3}\right\rceil$
(viii)By Theorem 4, $d\left(W_{n}, i\right)=d\left(W_{n-1}, i-1\right)+d\left(W_{n-2}, i-1\right)+d\left(W_{n-3}, i-1\right)+\binom{n-4}{i-1}$, and since $i \geq n-$ $2 \rightarrow i-1>n-4$, then $\binom{n-4}{i-1}=0$ therefore, $d\left(W_{n}, i\right)=d\left(W_{n-1}, i-1\right)+d\left(W_{n-2}, i-1\right)+d\left(W_{n-3}, i-\right.$

1) $\forall i \geq n-2$
(ix) since $i=n-3$, then $\binom{n-4}{i-1}=\binom{n-4}{n-4}=1$, therefore, $d\left(W_{n}, i\right)=d\left(W_{n-1}, i-1\right)+d\left(W_{n-2}, i-1\right)+d\left(W_{n-3}, i-\right.$ 1) +1 if $i=n-3$ (Theorem 4)

3. DOMINATION POLYNOMIAL OF A WHEEL

In this subsection we introduce and investigate the domination polynomial of wheels.
Definition. Let W_{n}^{i} be the family of dominating sets of a wheel W_{n} with cardinality i and let $\mathrm{d}\left(W_{n}, \mathrm{i}\right)=\left|W_{n}^{i}\right|$. Then the domination polynomial $D\left(W_{n}, x\right)$ of W_{n} is defined as $D\left(W_{n}, x\right)=\sum_{i=1}^{n} d\left(W_{n}, i\right) x^{i}$ [1]
Theorem 6. Let $D\left(W_{n}, x\right)$ be domination polynomial of $W_{n} \forall n \geq 4$ then
(i) $D\left(W_{n}, x\right)=D\left(S_{n}, x\right)+D\left(C_{n-1}, x\right)-x^{n-1}$
(ii) $D\left(W_{n}, x\right)=D\left(W_{n}, x\right)+x D\left(W_{n-1}, x\right)+x D\left(W_{n-2}, x\right)+x D\left(W_{n-3}, x\right)+\sum_{i=1}^{n-4}\binom{n-4}{i-1} x^{i}$

Proof.
(i) From definition of the domination polynomial and Theorem 3, we have
(1) $D\left(W_{n}, x\right)=\sum_{i=1}^{n} d\left(W_{n}, i\right) x^{i}=\sum_{i=1}^{n}\left[d\left(S_{n}, i\right)+d\left(C_{n-1}, i\right)\right] x^{i}=\sum_{i=1}^{n} d\left(S_{n}, i\right) x^{i}+\sum_{i=1}^{n} d\left(C_{n-1}, i\right) x^{i}$, we have $d\left(C_{n-1}, i\right)$
$=0$ if $i<\left\lceil\frac{n-1}{3}\right\rceil$ or $i=n($ Lemma1 $)$, then $\sum_{i=1}^{n} d\left(C_{n-1}, i\right) x^{i}=\sum_{i=\left\lceil\frac{n-1}{3}\right\rceil}^{n-1} d\left(C_{n-1}, i\right) x^{i}=D\left(C_{n-1}, x\right)$, and $\sum_{i=1}^{n} d\left(S_{n}, i\right) x^{i}=$ $D\left(S_{n}, x\right)$, then $D\left(W_{n}, x\right)=D\left(S_{n}, x\right)+D\left(C_{n-1}, x\right)$
(2) $d\left(W_{n}, n-1\right) x^{n-1}=\left[d\left(S_{n}, n-1\right)+d\left(C_{n-1}, n-1\right)\right] x^{n-1}=(\mathrm{n}+1) x^{n-1}=n x^{n-1}+x^{n-1}$, but $d\left(W_{n}, n-1\right) x^{n-1}=$ $n x^{n-1}$, then From (1) and (2), we get $D\left(W_{n}, x\right)=D\left(S_{n}, x\right)+D\left(C_{n-1}, x\right)-x^{n-1}$.
(ii) From definition of the domination polynomial and Theorem 3, we have
$D\left(W_{n}, x\right)=\sum_{i=1}^{n} d\left(W_{n}, i\right) x^{i}=\sum_{i=1}^{n}\left[d\left(W_{n-1}, i-1\right)+d\left(W_{n-2}, i-1\right)+d\left(W_{n-3}, i-1\right)+\binom{n-4}{i-1}\right] x^{i}=\sum_{i=1}^{n} d\left(W_{n-1}, i-\right.$ 1) $x^{i}+\sum_{i=1}^{n} d\left(W_{n-2}, i-1\right) x^{i}+\sum_{i=1}^{n} d\left(W_{n-3}, i-1\right) x^{i}+\sum_{i=1}^{n}\binom{n-4}{i-1} x^{i}$, since $d\left(W_{n}, i\right)=0$ ifi $>$ nori $=0$ by Lemma 1,
then $D\left(W_{n}, x\right)=x \sum_{i=2}^{n} d\left(W_{n-1}, i-1\right) x^{i-1}+x \sum_{i=2}^{n-1} d\left(W_{n-2}, i-1\right) x^{i-1}+x \sum_{i=2}^{n-2} d\left(W_{n-3}, i-\right.$

1) $x^{i-1}+\sum_{i=1}^{n-4}\binom{n-4}{i-1} x^{i}=x D\left(W_{n}, x\right)+x D\left(W_{n-1}, x\right)+x D\left(W_{n-2}, x\right)+x D\left(W_{n-3}, x\right)+\sum_{i=1}^{n-4}\binom{n-4}{i-1} x^{i}$

Example 1. Let W_{9} be wheel with order 9, such that a vertex $(v 1)$ be center vertex, $D\left(W_{9}, x\right)=x+8 x^{2}+36 x^{3}+$ $94 x^{4}+118 x^{5}+84 x^{6}+36 x^{7}+9 x^{8}+x^{9}$. (see Fig-2)

4. REFERENCES

[1] S. Alikhani, Y. H. Peng, Dominating Sets and Domination Polynomial of Cycles, arXiv preprint arXiv:0905.3268 (2009).
[2] S. Alikhani, Y. H. Peng, Dominating Sets and Domination Polynomial of Certain Graphs, II, Opuscula Mathematica 30, no. 1 (2010): 37-51.
[3].M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completness. Freeman, New York, 1979.
[4]S. Sh. Kahat, A. M. Khalaf and Roslan Hasni, Dominating Sets and Domination Polynomial of stars, Australian Journal of Basic and Applied Sciences, June 2014.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

