Dominating Sets and Domination Polynomial of Wheels

Sahib Sh. Kahat¹, Abdul Jalil M. Khalaf²* and Roslan Hasni³

¹Department of Mathematics, Faculty of Mathematics and Computer Science University of Kufa, Najaf, IRAQ.

²Department of Mathematics, Faculty of Mathematics and Computer Science

University of Kufa, Najaf, IRAQ. *E-mail: abduljaleel.khalaf {at} uokufa.edu.iq*

³Department of Mathematics, Faculty of Science, UMT, Terengganu, MALAYSIA.

ABSTRACT—Let G = (V, E) be a simple graph. A set $D \subseteq V$ is a dominating set of G, if every vertex in V - D is adjacent to at least one vertex in D. Let W_n be wheel with order n. Let W_n^i be the family of dominating sets of a wheels W_n with cardinality i, and let $d(W_n, i) = |W_n^i|$. In this paper, we construct W_n , and obtain a recursive formula for $d(W_n, i)$. Using this recursive formula, we consider the polynomial $D(W_n, x) = \sum_{i=1}^n d(W_n, i)x^i$, which we call domination polynomial of wheels and obtain some properties of this polynomial.

1. INTRODUCTION

Let G = (V, E) be a simple graph of order |V| = n. A set $D \subseteq V$ is a dominating set of G, if every vertex in V - Dis adjacent to atleast one vertex in D. The domination number $\gamma(G)$ is the minimum and generally accepted that the problem of determining the dominating sets of anarbitrary graph is a difficult one (see [3]). Alikhani and Peng found the dominating set and domination polynomial of cycles and certaingraph [1], [2]. Kahat and Khalaf. found the dominating set and domination polynomial of stars [4]. Let G_n be graph with order n and let G_n^i be the family of dominating sets of a graph G_n with cardinality i and let $d(G_n, i) = |G_n^i|$. We call the polynomial $D(G_n, x) = \sum_{i=\gamma(G)}^n d(G_n, i)x^i$, the domination polynomial of graph G [2]. Let W_n^i be the family of dominating sets of a wheel W_n with cardinality i and let $d(W_n, i) = |W_n^i|$. We call the polynomial $D(W_n, x) = \sum_{i=1}^n d(W_n, i)x^i$, the domination polynomial of wheel. In the next section we construct the families of dominating sets of W_n with cardinality i = 1. We investigate the domination polynomial of wheel in Section 3.

As usual we use $\binom{n}{i}$ for the combination n to *i*, and we denote the set{1, 2, ..., *n*} simply by [*n*]

2. DOMINATING SETS OF WHEEL (W_n)

Let $W_n, n \ge 3$, be the wheel with n vertices $V(W_n) = [n]$ and $E(W_n) = \{(1, 2), (1, 3), \dots, (1, n), (2, 3), (3, 4), \dots, (n - 1, n), (n, 2)\}$. Let W_n^i be the family of dominating sets of W_n with cardinality *i*. We shall investigate dominating sets of wheels. To prove our main results we need the following lemma: **Lemma** 1 [4]. The following properties hold for all graph G. (i) $|G_n^n| = 1$ (ii) $|G_n^{n-1}| = n$ (iii) $|G_n^i| = 0$ if i > n. (iv) $|G_n^0| = 0$ **Theorem 1** [1] For every $n \ge 4, j \ge \left[\frac{n}{3}\right], d(C_n, j) = d(C_{n-1}, j - 1) + d(C_{n-2}, j - 1) + d(C_{n-3}, j - 1)$ **Theorem 2**[4]Let S_n be star with order $n \ge 3$, then $d(S_n, i) = d(S_{n-1}, i) + d(S_{n-1}, i - 1) \forall i \ne n-2$ **Theorem 3**Let W_n be star with order $n \ge 4$, then $d(W_n, i) = d(S_n, i) + d(C_{n-1}, i - 1) \forall i \forall < n-1$ **Proof.** Let S_n be a star and $v \in V(S_n)$ such that v is center of S_n , let S_n be a spanning subgraph of W_n , and since $W_n - v = C_{n-1}$ then $S_n \cup C_{n-1} = W_n$, since $d(S_n, i) = |S_n^i|$, and $d(C_{n-1}, i) = |C_{n-1}^i|$, and $d(W_n, i) = |W_n^i|$, and since $d(W_n, n-1) = n$ and $d(W_n, n) = 1$ (Lemma 1), then $d(W_n, i) = d(S_n, i) + d(C_{n-1}, i) \forall i < n-1$.

Theorem 4Let W_n be star with order $n \ge 4$, then $d(W_n, i) = d(W_{n-1}, i - 1) + d(W_{n-2}, i - 1) + d(W_{n-3}, i - 1)$ $\binom{n-4}{i-1}$

Proof. By Theorem 3, and by Theorem 2[4] $d(S_n, i) = d(S_{n-1}, i) + d(S_{n-1}, i-1) = d(S_{n-2}, i) + d(S_{n-2}, i-1) + d(S_{n-2}, i-1$ $d(S_{n-1}, i-1) = d(S_{n-3}, i) + d(S_{n-3}, i-1) + d(S_{n-2}, i-1) + d(S_{n-1}, i-1), \text{ and by Theorem 1 [1], } d(C_n, j) = d(S_n, j) + d(S_n, j)$ $d(C_{n-1}, j-1) + d(C_{n-2}, j-1) + d(C_{n-3}, j-1)$, and since $d(S_{n-3}, i) = \binom{n-4}{i-1}$ and by Theorem 3, then $d(W_n, i) = d(W_{n-1}, i - 1) + d(W_{n-2}, i - 1) + d(W_{n-3}, i - 1) + {\binom{n-4}{i-1}}$

Using Theorem 3 and Theorem 4, we obtain the coefficients of $D(W_n, x)$ for $1 \le n \le 15$ in Table 1. Let $d(W_n, i) =$ $|W_n^i|$. There are interesting relationships between the numbers $d(W_n, i)$ $(1 \le i \le n)$ in the table.

j.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n			<u>(</u>		1				1						_
1	1														
2	2	1													
3	3	3	1												
<u>4</u> 5	4	6	4	1											
5	1	10	10	5	1										
6	1	10	20	15	6	1									
7	1	9	29	35	21	7	1								
8	1	7	35	63	56	28	8	1							
9	1	8	36	94	118	84	36	9	1						
10	1	9	39	120	207	201	120	45	10	1					
11	1	10	45	145	312	402	320	165	55	11	1				
12	1	11	55	176	429	693	715	484	220	66	12	1			
13	1	12	66	223	567	1074	1380	1191	703	286	78	13	1		
14	1	13	78	286	754	1565	2379	2535	1795	988	364	91	14	1	
15	1	14	91	364	1015	2212	3789	4954	4375	2863	1351	455	105	15	1

Table 2. $d(W_n, i)$ The number of dominating sets of W_n with cardinality i

In the following theorem, we obtain some properties of $d(W_n, i)$

Theorem 5 The following properties hold for every $n \in Z^+, n \ge 3$.

- $d(W_n, 1) = 1 \quad \forall n > 4.$ i.
- ii. $d(W_n, 2) = n - 1, \forall n > 7$
- $d(W_n, n-2) = \binom{n}{2}$ iii.
- iv.
- $d(W_n, n-3) = \binom{n}{3} \\ d(W_n, n-4) = \binom{n}{4} (n-1)$ v.
- $\gamma(W_n)=1\;.$ vi.
- $d(W_n, i) = \binom{n}{i} \binom{n-1}{i} \quad \forall i < \left\lceil \frac{n-1}{3} \right\rceil$ vii.

 $\begin{aligned} &d(W_n,i) = d(W_{n-1},i-1) + d(W_{n-2},i-1) + d(W_{n-3},i-1) \forall i \geq n-2 \\ &d(W_n,i) = d(W_{n-1},i-1) + d(W_{n-2},i-1) + d(W_{n-3},i-1) + 1 \ if \ i = n-3 \end{aligned}$ viii.

ix.

proof Let W_n be a wheel and $v \in V(W_n)$ such that v is center of W_n then (i) By Theorem 3 $d(W_n, i) = d(S_n, i) + d(C_{n-1}, i-1)$, and since $d(S_n, 1) = 1 \forall n > 4$ [4], and $d(C_{n-1}, 1) = 0 \forall n > 4$ [1], then $d(W_n, 1) = 1 \forall n > 4$ (ii) Since $d(S_n, 2) = n - 1 \forall n > 3[4]$, and $d(C_{n-1}, 2) = 0 \forall n > 7[1]$, then $d(W_n, 2) = n - 1 \forall n > 7$ (iii) By Theorem 3, $d(W_n, n - 2) = d(S_n, n - 2) + d(C_{n-1}, n - 2)$, and since $d(C_{n-1}, n - 2) = (n - 1), d(S_n, n - 2) = \binom{n-1}{i-3}[1][4]$, then $d(W_n, n - 2) = \binom{n-1}{n-3} - (n - 1) = \frac{(n-1)(n-2)}{2} + (n - 1) = \frac{n(n-1)}{2} = \binom{n}{2}$ (iv) By Theorem 3, $d(W_n, n-3) = d(S_n, n-3) + d(C_{n-1}, n-3)$, and since $d(C_{n-1}, n-3) = \binom{n-1}{2}$, $d(S_n, n-3) = \binom{n-1}{2}$, $d(S_n, n-3) = \binom{n-1}{n-4}$. $\binom{n-1}{n-4}$ [1] [4], then $d(W_n, n-3) = \binom{n-1}{n-4} \cdot \binom{n-1}{2} = \frac{(n-1)(n-2)(n-3)}{6} + \frac{(n-1)(n-2)}{2} = \frac{n(n-1)(n-2)}{6} = \binom{n}{3}$

(v) By Theorem 3 and [1] [4], $d(W_n, n-4) = d(S_n, n-4) + d(C_{n-1}, n-4) = \binom{n}{n-4} - \binom{n-1}{n-4} + \frac{(n-5)(n-1)n}{6} = \binom{n}{4} - \binom{n-1}{3} + \frac{(n-5)(n-1)n}{6} = \binom{n}{4} - \binom{n-1}{6} = \binom{$

3. DOMINATION POLYNOMIAL OF A WHEEL

In this subsection we introduce and investigate the domination polynomial of wheels. **Definition**. Let W_n^i be the family of dominating sets of a wheel W_n with cardinality *i* and let $d(W_n, i) = |W_n^i|$. Then the domination polynomial $D(W_n, x)$ of W_n is defined as $D(W_n, x) = \sum_{i=1}^n d(W_n, i)x^i$ [1]

Theorem 6. Let $D(W_n, x)$ be domination polynomial of $W_n \forall n \ge 4$ then (i) $D(W_n, x) = D(S_n, x) + D(C_{n-1}, x) \cdot x^{n-1}$ (ii) $D(W_n, x) = D(W_n, x) + xD(W_{n-1}, x) + xD(W_{n-2}, x) + xD(W_{n-3}, x) + \sum_{i=1}^{n-4} \binom{n-4}{i-1} x^i$ *Proof.* (i) From definition of the domination polynomial and Theorem 3, we have (1) $D(W_n, x) = \sum_{i=1}^n d(W_n, i) x^i = \sum_{i=1}^n [d(S_n, i) + d(C_{n-1}, i)] x^i = \sum_{i=1}^n d(S_n, i) x^i + \sum_{i=1}^n d(C_{n-1}, i) x^i$, we have $d(C_{n-1}, i)$ = 0 if $i < [\frac{n-1}{3}]$ or i = n(Lemma1), then $\sum_{i=1}^{n-1} d(C_{n-1}, i) x^i = \sum_{i=1}^{n-1-1} \frac{d(C_{n-1}, i) x^i = D(C_{n-1}, x)}{d(C_{n-1}, i) x^{i-1} = D(S_n, x), \text{ then } D(W_n, x) = D(S_n, x) + D(C_{n-1}, x)$ (2) $d(W_n, n-1) x^{n-1} = [d(S_n, n-1) + d(C_{n-1}, n-1)] x^{n-1} = (n+1) x^{n-1} = n x^{n-1} + x^{n-1}, \text{ but } d(W_n, n-1) x^{n-1} = n x^{n-1}$, then From (1) and (2), we get $D(W_n, x) = D(S_n, x) + D(C_{n-1}, x) - x^{n-1}$. (ii) From definition of the domination polynomial and Theorem 3, we have $D(W_n, x) = \sum_{i=1}^n d(W_n, i) x^i = \sum_{i=1}^n [d(W_{n-1}, i - 1) + d(W_{n-2}, i - 1) + d(W_{n-3}, i - 1) + \binom{n-4}{i-1}] x^i = \sum_{i=1}^n d(W_{n-1}, i - 1) x^{i-1} + x \sum_{i=1}^n \binom{n-4}{i-1} x^i$, since $d(W_n, i) = 0$ if i > nori = 0 by Lemma 1, then $D(W_n, x) = x \sum_{i=2}^n d(W_{n-1}, i - 1) x^{i-1} + x \sum_{i=2}^{n-2} d(W_{n-2}, i - 1) x^{i-1} + x \sum_{i=1}^{n-2} d(W_{n-3}, i - 1) x^{i-1} + x \sum_{i=1}^{n-2} d(W_{n-3}, i - 1) x^{i-1} + x D(W_{n-2}, x) + x D(W_{n-3}, x) + \sum_{i=1}^{n-4} \binom{n-4}{i-1} x^i$

Example 1. Let W_9 be wheel with order 9, such that a vertex (v1) be center vertex, $D(W_9, x) = x + 8x^2 + 36x^3 + 94x^4 + 118x^5 + 84x^6 + 36x^7 + 9x^8 + x^9$.(see Fig-2)

4. REFERENCES

[1] S. Alikhani, Y. H. Peng, Dominating Sets and Domination Polynomial of Cycles, arXiv preprint arXiv:0905.3268 (2009).

[2] S. Alikhani, Y. H. Peng, Dominating Sets and Domination Polynomial of Certain Graphs, II, Opuscula Mathematica 30, no. 1 (2010): 37-51.

[3].M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completness. Freeman, New York, 1979.

[4]S. Sh. Kahat, A. M. Khalaf and Roslan Hasni, Dominating Sets and Domination Polynomial of stars, Australian Journal of Basic and Applied Sciences, June 2014.

[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.