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_________________________________________________________________________________ 

ABSTRACT— This paper presents a resource efficient reconfigurable hardware implementation of Advance 

Encryption Standard (AES) algorithm using High Level Language (HLL) approach on Field Programmable Gate 

Array (FPGA) for rapid development. In this work, we use an approach to directly map the design described in a high 

level package i.e. System Generator on FPGA platforms. This approach is ideal for Encryption functions where the 

development of data-path architectures can easily be done to provide bit and cycle accurate models. Our approach fills 

the gap between performance and flexibility by efficiently applying re-configurability. We use primitive level approach 

and customize all the operations our design by effectively utilizing conventional blocks of Xilinx System Generator to 

get optimum performance in terms of speed and area. This approach enables us to minimize critical paths in design 

and increase the overall frequency of design especially for MixColumn and SubByte transform. Our design shows 

best performance in terms of speed and area as compared with any other software and hardware/software co-design 

implementation counterparts, it operates at 288.19 MHZ and offers high throughput of 36.864 Gbps.        

Keywords— AES, System Generator, FPGA, Cryptography 

_________________________________________________________________________________ 

 

1. NTRODUCTION 

In the era of this modern world, secrecy and security are the major concerns which should be kept in mind with 

respect to digital computer systems. Cryptography provides solutions regarding fool proof secrecy, security, and 

reliability of given information. It is keeping its vital function in different applications which includes online banking 

system, Cellular networks, computer hardware emulations, medical imaging, software defined radios, bioinformatics and 

wireless communication etc. Reconfigurable platform like FPGA are the best for implementation of cryptographic 

algorithms [1]. These platforms are reconfigurable to provide time and cost effective solutions as compared to 

Application Specific Integrated Circuit (ASIC) [2]. A reconfigurable platform provides improved performance than 

software implementations and can also be reconfigured on the fly to store the updated encryption standard. 

In recent years, digital hardware design seems to be more similar to the software design, driven by the increased 

complex design, time-to-market anxiety and demand for an effective participation between various project teams. 

Platform-based design has become appropriate for IC design projects in this digital world. To minimize the algorithmic 

process time in term of plenty of data, it is very much inevitable to adopt and implement the algorithm of hardware, 

despite the fact that software implementation can only meet the requirement of low cost for users. In order to attain a 

balance between the cost and time, an efficient method must be explored and implement for various combinations of 

hardware and software to realize algorithmic best solutions of different requisite. 

In this work we focus on the efficient and well organized implementation of AES architecture on FPGA using HLL 

approach i.e. Xilinx System Generator. The proposed FPGA platform for the implementation of this work is Virtex-5 

FPGA from Xilinx. HLLs provide a better way to achieve the high-performance in reconfigurable computing to 

implement any design in hardware [3]. It provides a great deal of functional abstraction and develops highly parallel 
systems. High level language tool automatically maps the model design to efficient hardware implementation.     

Our paper is further structured as follows: Section – 2 presents the literature survey of the related high level 

implementations of AES. Section – 3 gives the brief overview of AES algorithm while section - 4 shows AES 

architecture using Xilinx System Generator. In section – 5, the verification of design and validity of results are discussed 

and Section – 6 presents the implementation results of proposed design. The conclusion of the work is given in section – 

7.   

 



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 02 – Issue 02, April 2014 

Asian Online Journals (www.ajouronline.com)  191 

 

2. RELATED WORK 

After the approval of AES in 2001, it has been implemented on many different platforms including hardware, 

software and high level language tools. In this literature we only focus on high level language based implementations of 

AES related to our work. A large number of AES high level language implementations have been done. Whereas, the 
earlier implementations mainly focused on the performance criterion but not the time constraints and the flexibility of the 

designs. 

Most recently adopted embedded systems design methodology prototypes a target design in a high-level languages 

such as C, Handel-C [4], System C [5] and Impulse C [6]. Most of them translate the design manually into an HDL code 

that can be prolonged and error-prone, thus reduces the flexibility of a prototype. Other high-level languages that can 

directly translate the design are too time-consuming.  

Mostly implementations are focused on software and hardware-based platforms, both have their own pros and cons. 

Software-based implementations [7] provide cost effective solutions and reduced Time-to-Market but at the cost of 

performance. Whereas hardware solutions [8] are better in terms of performance but cost of the design and Time-to-

Market increases to great extend. High-level language is the platform that provides the features in-between the two. In 

this study, we have tried to enhance the performance of high-level package by applying some efficient optimization 
techniques in the design and integrating it with the hardware platform FPGA. 

M. Mali et al. [4] implemented AES using high-level design language Handel-C on Celoxica RC1000 development 

board and Celoxica DK development suite. It runs at the frequency of 74.4 MHz for an external data storage unit. While, 

in [5] M. Askar et al. presented AES implementation using System C tool and System Crafter tool to translate the System 

C descriptions into hardware. It takes 153 machine cycles to process 128-bit data. In [6], M. Lukowiak et al. described 

the AES architecture with data-path of 32-bit using different environment such as Impulse C, C-to-FPGA programming 

model and Compilation engine to introduce rapid prototyping of digital hardware. The relative performance using 

Impulse C achieves a speedup of 128.6 times as compared to other software implementations while in [9], D. Osvik et al. 

has given the AES-128 encryption architecture by targeting not only the low-end processors such as 8-bit AVR 

microcontroller and 32-bit ARM microprocessor but also on high performance NVIDIA and cell broadband processing 

engine. On 8-bit AVR microcontroller it offers the frequency of 124.6 cycles/byte while on 32-bit ARM microprocessor 

it results in the frequency of 34 cycles/byte. The AES architecture is designed to reduce the required number of clock 
cycles during encryption and decryption using these targeted platforms. In [10], T. Babu et al. reported the hardware 

together with high-level design tools realization. They implemented the AES algorithm using custom instruction method 

provided by ARM 7 with Keil platform. Hasamnis et al. [11] has also presented the high-level design architecture for 

AES implementation where the algorithm is controlled through C-code written in NIOS II IDE that requires 21731020 

CPU Cycles to complete the simulation. Bos et. al [12] reported two  128-bit AES implementations on NVIDIA graphics 

processing units (GPUs) and the Cell broadband engine. The GPU implementation delivers the throughput of 0.17 cycles 

per byte for encryption module and the Cell broadband engine offer the speed of 11.7 cycles per byte. In [13],  Biglari et 

al  present 128-bit pipeline architecture of AES on Maestro platform. This work presents tightly coupled encryption and 

round key generation modules in the main encryption module that enables the design to reach a throughput of 12.8 Gbps 

and runs at the speed of 100MHz. Similarly Mourad et al [14] presents the methodology which maps the AES design 

described in a high level language, Handel-C, to FPGA for low area consideration. This design reported 437 slices for 
encryption and offers the throughput of 1.716 Gbps.   

 

3. ADVANCED ENCRYPTION STANDARD 

In October, 2000 the Rijndael algorithm was selected as the new Advanced Encryption Standards (AES) Algorithm 

by National Institute of Standards and Technology (NIST) and announced as Federal Information Processing Standard 

Publication (FIPS PUB) 197 in November, 2001 [15]. AES algorithm used to supports 128-bit data and variable key sizes 

of 128,192 and 256 bits. The 16 bytes of data arranged in a 4 x 4 array of bytes with four rows and four columns called 

the state, and is treated as input for AES algorithm as depicted in Figure 1.  

 

 

 

 

 

 

 

 
S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 

 
Figure 1: State Array 

 



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 02 – Issue 02, April 2014 

Asian Online Journals (www.ajouronline.com)  192 

 

 

AES-128 algorithm comprises of ten rounds and each round further consists of four basic byte-oriented 

transformations i.e. ShiftRow, SubByte, MixColumn and AddRoundKey except the last round where the MixColumn 

transformation is eliminated. An initial round is added at the start-up which comprises of only AddRoundKey 

transformation as shown in Figure 2. 

 
 

 

 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

                                          Figure 2: Advance Encryption Standard 

 

3.1 SubByte 

SubByte is a non-linear substitution of bytes; each byte of the state is replaced with another using substitution table 

(S-box). The S-box is invertible and two transformations takes place in order to construct substitution table i.e. to takes 

the multiplicative inverse in GF(28) [16] in which the elements {00} are being mapped itself and then affine transform is 

applied over GF(28). 

                                     ][ ,, jiji bSb                                                                                                              (1) 

3.2 ShiftRow 

ShiftRow transformation cyclically shifts the last three rows of the state with a certain number of steps to the left 
while first row remained unchanged. It also performs the function of one byte shift in the second row, two bytes shift in 

the third and three byte shift in fourth row. 

 

3.3 MixColumn 

MixColumn is a column-by-column operation on the state. Each column is a fourth-order polynomial over finite field 

GF(28) and multiplied modulo x4+1 with the fixed polynomial b(x): 

 

 }02{}01{}01{}03{)( 23  xxxxb                                                                           (2) 

 

The matrix representation of above equation is given below. 

 

 
Plaintext 

AddRoundKey 

1. SubBytes 

2. ShiftRows 

3. MixColumns 

4. AddRoundKey 

SubBytes 

ShiftRows 

AddRoundKey 

Cipher text 

i = 1 to 9 

 

 
 



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 02 – Issue 02, April 2014 

Asian Online Journals (www.ajouronline.com)  193 

 





























































c

c

c

c

c

c

c

c

s

s

s

s

s

s

s

s

,3

,2

,1

,0

,3

,2

,1

,0

02010103

03020101

01030201

01010302

'

'

'

'

                                                                                                                   (3) 

 

As a result of multiplication the four bytes in a column are substituted by the following equations: 
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3.4 AddRoundKey 

AddRoundKey is the transformation where Round Key is added to the state by performing simple bitwise XOR 

operation, and each Round Key is derived by using a key schedule. 
  

4. IMPLEMENTATION 

Iterative [17] and pipelined architectures [18] are the two basic reconfigurable architectures that are commonly used 

for the implementation of encryption functions depending on type of application ranging from low to high speed. In this 

work we adopted pipelined architecture to implement AES encryption function in order to get best possible results in 

term of throughput. Further we have used the HLL approach to directly map our design on FPGA. In addition, our design 

is not device-specific; System Generator is highly scalable and can synthesis a design to different FPGA chips that leads 

to more flexible and fast design [19]. 

The block diagram of our full 128-bit AES pipelined architecture is shown in Figure 3, where each round is 
implemented separately in hardware by enclosing the four transformations as subsystems except in the last round where 

MixColumn transform has been eliminated. Initial round consists of only AddRoundKey transformation where input data 

is XORed with the initial Round Key value. Registers are placed at the end of each round forming hierarchical stages 

within each round of the algorithm. Each 128-bit transform; SubByte, MixColumn, AddRoundkey consists of four 

parallel copies of 32-bit modules. The detailed implementation and optimization of each is as follows: 

 

 

 

 

 

 

 

 

 

Figure 3: Pipelined Architecture of our AES in System Generator 

 

  

4.1 SubByte and ShiftRow 

There are two basic methods for generating SubByte of AES, either by using multiplicative inverse or by using 

memory based table lookup. We designed the SubByte using lookup based approach with the help of Dual-Port RAM to 
store 256 lookup values. Dual-Port RAM is configured as a ROM to access 8-bit lookup values corresponding to each 8-

bit input addresses, for this we have operated the Dual-Port RAM in “no read on write” mode. Input of constant zero is 
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given to the data input pin & write enable pin of RAM as we have not required here to write the data. Lookup values are 

directly stored in the dual port RAM with the help of coefficient file in the form of decimal numbers.  

The input bytes are delivered to the address pins addra [7:0] and addrb [7:0] of the BRAM while corresponding 

lookup values will be taken from the output pins A [7:0] and B [7:0] of the Dual-Port RAM. Input of 128-bit State is 

arranged in the four 32-bits words and each is directly given to the 4 32-bit SubByte block. The details of our proposed 

32-bits SubByte architecture is shown in Figure 4 which consists of two Dual-Port RAMs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: System Generator SubByte 
 

 

Before applying the 32-bit data to each port of the Dual port RAMs for lookup, we first extract 8-bit data from 32-bit 

input. Because each RAM is able to lookup 8-bit data and we cannot apply the 32-bit data directly to Dual port RAMs. 

So for this we have used 32-bit to 8-bit conversion block. We can extract our desired 8 bit data by using the slice blocks. 

But this approach is not efficient in term of resource as it will require numerous slice resources. Therefore we redesigned 

this block by using custom logic in which we have used the right and left shift methodology to extract 8 bit data which 

helped us to save resources up to 1700 slices. The detail of 32-bit to 8-bit conversion module is shown in Figure 5. The 

ShiftRow transformation is also implemented within the same SubByte block to save the resources. This is done simply 

by rearranging the wires according to the shifted data as marked by red box in Figure 4 and applied directly to the RAMs. 

 

 

 

 
 

  

 

 

 

 

 

 

 

Figure 5: 32 bit to 8 bit Conversion 
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valuable hardware resources. We implement our multipliers by using shift and add algorithm to save the utilization cost. 

The architecture of MixColumn for first 32-bit data is shown in Figure 6, 32-bit data is passed directly through a 

connection wire when multiplied by number “1”. Here in this block we have designed two multipliers to carry out the 

multiplication between input data and the numbers “2” and “3”.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: MixColumn 

 

Multiplier 2 is designed by using shift block where left shift is applied to input data which results in multiplication by 

number “2” as shown in Figure 7. 

 

 

 

 

 

 

 

 

Figure 7: Multiplier 2 

 

While Multiplier 3 is designed by dividing the number “3” into (2+1) where multiplication of data by number “2” is 

done by single left shift and the resultant number is then added to itself by using XOR operation as shown in Figure 8. 

 

 

 

 

 

 

 

 

Figure 8: Multiplier 3 
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programmed by the following code. 

 

Function z = x1max(x, y) 

if x < 256 

z = x 

 

4.3 AddRoundKey 

AddRoundKey transformation receives 16 bytes of data from MixColumn and performs XORing with the Round 

Keys. Round Keys are taken from FIPS-197 [2], converted to decimal numbers and are provided on the fly in the form of 

constants as shown in Figure 9. Here the expression blocks are used for XORing. 

 

 

 

 

 

 

 

 

 

 

Figure 9: AddRoundKey 

 

 

5. VALIDATION  

Result outputs and behavior of design is verified by giving the pre-defined test vectors defined in AES FIP-197 [15] 

against standard AES output for testing and validation. Each module is implemented and validated individually. The 

functionality of each step is tested and verified one by one. Then the verification of output of each round is performed 

and validated the results after combining all the rounds in the main module.    
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implementation using System C tool and System Crafter tool to translate the System C descriptions into hardware. It 

takes 153 machine cycles to process whole data and throughput of 90(Mbit/s). It reported 178 numbers of occupied slices 

for MixColumn and 197 number of slices for the implementation of ShiftRow, whereas our approach gives 380 slices for 
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architecture on ARM platform that operates on the frequency of 124.6 cycles/byte and 34 cycles/byte respectively. Babu 

et al [10] implemented 128-bit architecture of AES using custom instruction method provided by ARM 7 with Keil 

platform. Hasamnis et al. [11] has given the high-level design architecture for 128-bit AES implementation where the 

algorithm is controlled through C-code written in NIOS II IDE that operates on frequency of 217.31020M Cycles. Next, 

Bos et al [12] reported the 128-bit AES implementation on NVIDIA graphics processing units (GPUs) and the Cell 

broadband engine. The GPU implementation delivers the throughput of 0.17 cycles per byte for encryption module and 
the Cell broadband engine offer the speed of 11.7 cycles per byte. In Biglari et al [13], the 128-bit pipeline architecture of 

AES is given on Maestro platform. This work presents tightly coupled encryption and round key generation modules in 

the main encryption module that enables the design to reach a throughput of 12.8 Gbps and runs at the speed of 100MHz. 

At the end, Mourad et al [14] presents the methodology which maps the AES design described in a high level language, 

Handel-C, to FPGA for low area consideration. This design reported 437 slices for encryption and offers the throughput 

of 1.716 Gbps.   

All the implementations discussed above are not efficient enough for high speed applications as effective frequency 

of these designs ranges from 34 to 153 machine cycles while our design frequency is 288.19MHz. So, it is concluded that 

this design is faster than the other reported implementation of AES. In addition, the design utilized minimum number of 

resources i.e. 380 slices and offers high throughput of 36.864 Gbps as compared to previous one . 

 

Table 1: Comparison Results of AES 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. CONCLUSION  

In this work we present efficient implementation of AES in term of area and speed using High Level Language tool. 

Our methodology not only reduces the overall resource utilization but also provide good enough clock frequency. It 

provides the user friendly design for Matlab users with very short development time and better performance as compared 

to any software and hardware-software co-design implementations. The important feature of this work is that so far no 

any implementation of AES has been reported on Xilinx System Generator. 
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