
Asian Journal of Applied Sciences (ISSN: 2321 – 0893)

Volume 02 – Issue 02, April 2014

Asian Online Journals (www.ajouronline.com) 190

FPGA Implementation of Advance Encryption Standard Using Xilinx

System Generator

*Alia Arshad, Kanwal Aslam, Dur-e-Shahwar Kundi and Arshad Aziz

Department of Electrical Engineering, National University of Sciences and Technology (NUST),

Karachi Campus, H-12 Islamabad, Pakistan
*
Email: alia_arshad123 {at} hotmail.com

ABSTRACT— This paper presents a resource efficient reconfigurable hardware implementation of Advance

Encryption Standard (AES) algorithm using High Level Language (HLL) approach on Field Programmable Gate

Array (FPGA) for rapid development. In this work, we use an approach to directly map the design described in a high

level package i.e. System Generator on FPGA platforms. This approach is ideal for Encryption functions where the

development of data-path architectures can easily be done to provide bit and cycle accurate models. Our approach fills

the gap between performance and flexibility by efficiently applying re-configurability. We use primitive level approach

and customize all the operations our design by effectively utilizing conventional blocks of Xilinx System Generator to

get optimum performance in terms of speed and area. This approach enables us to minimize critical paths in design

and increase the overall frequency of design especially for MixColumn and SubByte transform. Our design shows

best performance in terms of speed and area as compared with any other software and hardware/software co-design

implementation counterparts, it operates at 288.19 MHZ and offers high throughput of 36.864 Gbps.

Keywords— AES, System Generator, FPGA, Cryptography

1. NTRODUCTION

In the era of this modern world, secrecy and security are the major concerns which should be kept in mind with

respect to digital computer systems. Cryptography provides solutions regarding fool proof secrecy, security, and

reliability of given information. It is keeping its vital function in different applications which includes online banking

system, Cellular networks, computer hardware emulations, medical imaging, software defined radios, bioinformatics and

wireless communication etc. Reconfigurable platform like FPGA are the best for implementation of cryptographic

algorithms [1]. These platforms are reconfigurable to provide time and cost effective solutions as compared to

Application Specific Integrated Circuit (ASIC) [2]. A reconfigurable platform provides improved performance than

software implementations and can also be reconfigured on the fly to store the updated encryption standard.

In recent years, digital hardware design seems to be more similar to the software design, driven by the increased

complex design, time-to-market anxiety and demand for an effective participation between various project teams.

Platform-based design has become appropriate for IC design projects in this digital world. To minimize the algorithmic

process time in term of plenty of data, it is very much inevitable to adopt and implement the algorithm of hardware,

despite the fact that software implementation can only meet the requirement of low cost for users. In order to attain a

balance between the cost and time, an efficient method must be explored and implement for various combinations of

hardware and software to realize algorithmic best solutions of different requisite.

In this work we focus on the efficient and well organized implementation of AES architecture on FPGA using HLL

approach i.e. Xilinx System Generator. The proposed FPGA platform for the implementation of this work is Virtex-5

FPGA from Xilinx. HLLs provide a better way to achieve the high-performance in reconfigurable computing to

implement any design in hardware [3]. It provides a great deal of functional abstraction and develops highly parallel
systems. High level language tool automatically maps the model design to efficient hardware implementation.

Our paper is further structured as follows: Section – 2 presents the literature survey of the related high level

implementations of AES. Section – 3 gives the brief overview of AES algorithm while section - 4 shows AES

architecture using Xilinx System Generator. In section – 5, the verification of design and validity of results are discussed

and Section – 6 presents the implementation results of proposed design. The conclusion of the work is given in section –

7.

Asian Journal of Applied Sciences (ISSN: 2321 – 0893)

Volume 02 – Issue 02, April 2014

Asian Online Journals (www.ajouronline.com) 191

2. RELATED WORK

After the approval of AES in 2001, it has been implemented on many different platforms including hardware,

software and high level language tools. In this literature we only focus on high level language based implementations of

AES related to our work. A large number of AES high level language implementations have been done. Whereas, the
earlier implementations mainly focused on the performance criterion but not the time constraints and the flexibility of the

designs.

Most recently adopted embedded systems design methodology prototypes a target design in a high-level languages

such as C, Handel-C [4], System C [5] and Impulse C [6]. Most of them translate the design manually into an HDL code

that can be prolonged and error-prone, thus reduces the flexibility of a prototype. Other high-level languages that can

directly translate the design are too time-consuming.

Mostly implementations are focused on software and hardware-based platforms, both have their own pros and cons.

Software-based implementations [7] provide cost effective solutions and reduced Time-to-Market but at the cost of

performance. Whereas hardware solutions [8] are better in terms of performance but cost of the design and Time-to-

Market increases to great extend. High-level language is the platform that provides the features in-between the two. In

this study, we have tried to enhance the performance of high-level package by applying some efficient optimization
techniques in the design and integrating it with the hardware platform FPGA.

M. Mali et al. [4] implemented AES using high-level design language Handel-C on Celoxica RC1000 development

board and Celoxica DK development suite. It runs at the frequency of 74.4 MHz for an external data storage unit. While,

in [5] M. Askar et al. presented AES implementation using System C tool and System Crafter tool to translate the System

C descriptions into hardware. It takes 153 machine cycles to process 128-bit data. In [6], M. Lukowiak et al. described

the AES architecture with data-path of 32-bit using different environment such as Impulse C, C-to-FPGA programming

model and Compilation engine to introduce rapid prototyping of digital hardware. The relative performance using

Impulse C achieves a speedup of 128.6 times as compared to other software implementations while in [9], D. Osvik et al.

has given the AES-128 encryption architecture by targeting not only the low-end processors such as 8-bit AVR

microcontroller and 32-bit ARM microprocessor but also on high performance NVIDIA and cell broadband processing

engine. On 8-bit AVR microcontroller it offers the frequency of 124.6 cycles/byte while on 32-bit ARM microprocessor

it results in the frequency of 34 cycles/byte. The AES architecture is designed to reduce the required number of clock
cycles during encryption and decryption using these targeted platforms. In [10], T. Babu et al. reported the hardware

together with high-level design tools realization. They implemented the AES algorithm using custom instruction method

provided by ARM 7 with Keil platform. Hasamnis et al. [11] has also presented the high-level design architecture for

AES implementation where the algorithm is controlled through C-code written in NIOS II IDE that requires 21731020

CPU Cycles to complete the simulation. Bos et. al [12] reported two 128-bit AES implementations on NVIDIA graphics

processing units (GPUs) and the Cell broadband engine. The GPU implementation delivers the throughput of 0.17 cycles

per byte for encryption module and the Cell broadband engine offer the speed of 11.7 cycles per byte. In [13], Biglari et

al present 128-bit pipeline architecture of AES on Maestro platform. This work presents tightly coupled encryption and

round key generation modules in the main encryption module that enables the design to reach a throughput of 12.8 Gbps

and runs at the speed of 100MHz. Similarly Mourad et al [14] presents the methodology which maps the AES design

described in a high level language, Handel-C, to FPGA for low area consideration. This design reported 437 slices for
encryption and offers the throughput of 1.716 Gbps.

3. ADVANCED ENCRYPTION STANDARD

In October, 2000 the Rijndael algorithm was selected as the new Advanced Encryption Standards (AES) Algorithm

by National Institute of Standards and Technology (NIST) and announced as Federal Information Processing Standard

Publication (FIPS PUB) 197 in November, 2001 [15]. AES algorithm used to supports 128-bit data and variable key sizes

of 128,192 and 256 bits. The 16 bytes of data arranged in a 4 x 4 array of bytes with four rows and four columns called

the state, and is treated as input for AES algorithm as depicted in Figure 1.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

Figure 1: State Array

Asian Journal of Applied Sciences (ISSN: 2321 – 0893)

Volume 02 – Issue 02, April 2014

Asian Online Journals (www.ajouronline.com) 192

AES-128 algorithm comprises of ten rounds and each round further consists of four basic byte-oriented

transformations i.e. ShiftRow, SubByte, MixColumn and AddRoundKey except the last round where the MixColumn

transformation is eliminated. An initial round is added at the start-up which comprises of only AddRoundKey

transformation as shown in Figure 2.

 Figure 2: Advance Encryption Standard

3.1 SubByte

SubByte is a non-linear substitution of bytes; each byte of the state is replaced with another using substitution table

(S-box). The S-box is invertible and two transformations takes place in order to construct substitution table i.e. to takes

the multiplicative inverse in GF(28) [16] in which the elements {00} are being mapped itself and then affine transform is

applied over GF(28).

][,, jiji bSb  (1)

3.2 ShiftRow

ShiftRow transformation cyclically shifts the last three rows of the state with a certain number of steps to the left
while first row remained unchanged. It also performs the function of one byte shift in the second row, two bytes shift in

the third and three byte shift in fourth row.

3.3 MixColumn

MixColumn is a column-by-column operation on the state. Each column is a fourth-order polynomial over finite field

GF(28) and multiplied modulo x4+1 with the fixed polynomial b(x):

 }02{}01{}01{}03{)(23  xxxxb  (2)

The matrix representation of above equation is given below.

Plaintext

AddRoundKey

1. SubBytes

2. ShiftRows

3. MixColumns

4. AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Cipher text

i = 1 to 9

Asian Journal of Applied Sciences (ISSN: 2321 – 0893)

Volume 02 – Issue 02, April 2014

Asian Online Journals (www.ajouronline.com) 193





























































c

c

c

c

c

c

c

c

s

s

s

s

s

s

s

s

,3

,2

,1

,0

,3

,2

,1

,0

02010103

03020101

01030201

01010302

'

'

'

'

 (3)

As a result of multiplication the four bytes in a column are substituted by the following equations:


)}02({)}03({'

)}03({)}02({'

)}03({)}02({'

)}03({)}02({'

,3,2,1,0,3

,3,2,1,0,2

,3,2,1,0,1

,3,2,1,0,0

ccccc

ccccc

ccccc

ccccc

sssss

sssss

sssss

sssss









 (4)

3.4 AddRoundKey

AddRoundKey is the transformation where Round Key is added to the state by performing simple bitwise XOR

operation, and each Round Key is derived by using a key schedule.

4. IMPLEMENTATION

Iterative [17] and pipelined architectures [18] are the two basic reconfigurable architectures that are commonly used

for the implementation of encryption functions depending on type of application ranging from low to high speed. In this

work we adopted pipelined architecture to implement AES encryption function in order to get best possible results in

term of throughput. Further we have used the HLL approach to directly map our design on FPGA. In addition, our design

is not device-specific; System Generator is highly scalable and can synthesis a design to different FPGA chips that leads

to more flexible and fast design [19].

The block diagram of our full 128-bit AES pipelined architecture is shown in Figure 3, where each round is
implemented separately in hardware by enclosing the four transformations as subsystems except in the last round where

MixColumn transform has been eliminated. Initial round consists of only AddRoundKey transformation where input data

is XORed with the initial Round Key value. Registers are placed at the end of each round forming hierarchical stages

within each round of the algorithm. Each 128-bit transform; SubByte, MixColumn, AddRoundkey consists of four

parallel copies of 32-bit modules. The detailed implementation and optimization of each is as follows:

Figure 3: Pipelined Architecture of our AES in System Generator

4.1 SubByte and ShiftRow

There are two basic methods for generating SubByte of AES, either by using multiplicative inverse or by using

memory based table lookup. We designed the SubByte using lookup based approach with the help of Dual-Port RAM to
store 256 lookup values. Dual-Port RAM is configured as a ROM to access 8-bit lookup values corresponding to each 8-

bit input addresses, for this we have operated the Dual-Port RAM in “no read on write” mode. Input of constant zero is

Register41

Register42

Register43

Register44 last Round

Out1

Out2

Out3

Out4

d

Gateway out1

Gateway out2

Gateway out3

Gateway out4

Display1

Display2

Display3

Display4

q Z
-1

d q Z
-1

d q Z
-1

d q Z
-1

 Out1

Out2

Out3

Out4

Register1

Register2

Register3

Register4

d q Z
-1

Initial Round

 Out1

Out2

Out3

Out4

 Round 1-9

d q Z
-1

d q Z
-1

d q Z
-1

Register41

Register42

Register43

Register44

Out1

Out2

Out3

Out4

d q Z
-1

d q Z
-1

d q Z
-1

d q Z
-1

Asian Journal of Applied Sciences (ISSN: 2321 – 0893)

Volume 02 – Issue 02, April 2014

Asian Online Journals (www.ajouronline.com) 194

given to the data input pin & write enable pin of RAM as we have not required here to write the data. Lookup values are

directly stored in the dual port RAM with the help of coefficient file in the form of decimal numbers.

The input bytes are delivered to the address pins addra [7:0] and addrb [7:0] of the BRAM while corresponding

lookup values will be taken from the output pins A [7:0] and B [7:0] of the Dual-Port RAM. Input of 128-bit State is

arranged in the four 32-bits words and each is directly given to the 4 32-bit SubByte block. The details of our proposed

32-bits SubByte architecture is shown in Figure 4 which consists of two Dual-Port RAMs.

Figure 4: System Generator SubByte

Before applying the 32-bit data to each port of the Dual port RAMs for lookup, we first extract 8-bit data from 32-bit

input. Because each RAM is able to lookup 8-bit data and we cannot apply the 32-bit data directly to Dual port RAMs.

So for this we have used 32-bit to 8-bit conversion block. We can extract our desired 8 bit data by using the slice blocks.

But this approach is not efficient in term of resource as it will require numerous slice resources. Therefore we redesigned

this block by using custom logic in which we have used the right and left shift methodology to extract 8 bit data which

helped us to save resources up to 1700 slices. The detail of 32-bit to 8-bit conversion module is shown in Figure 5. The

ShiftRow transformation is also implemented within the same SubByte block to save the resources. This is done simply

by rearranging the wires according to the shifted data as marked by red box in Figure 4 and applied directly to the RAMs.

Figure 5: 32 bit to 8 bit Conversion

4.2 MixColumn

In MixColumn block we need a multiplier of 1, 2 and 3. However the implementation of multipliers is very costly in

hardware. MixColum use multiply by constant and it can efficiently implemented using multiplier less approach to save

addra

addrb

dina

dinb

wea

web

A

B

addra

addrb

dina

dinb

wea

web

A

B

0

0

1 In 1

constant1

constant2

32-bit to 8-bit conversion

out1
out2
out3
out4

In1
1

2

3

4

Dual port RAM1

Dual port RAM2

ShiftRow

out1

out4

out3

out2

X>>24

shift1

X>>24

shift3

X>>24

shift5

X>>24

shift7

X<<8

shift2

X<<16

shift4

X<<24

shift6

cast

cast

cast

cast

convert1

convert2

convert3

convert4

1

out1

2

out2

3

out3

4

out4

1

In1

Asian Journal of Applied Sciences (ISSN: 2321 – 0893)

Volume 02 – Issue 02, April 2014

Asian Online Journals (www.ajouronline.com) 195

valuable hardware resources. We implement our multipliers by using shift and add algorithm to save the utilization cost.

The architecture of MixColumn for first 32-bit data is shown in Figure 6, 32-bit data is passed directly through a

connection wire when multiplied by number “1”. Here in this block we have designed two multipliers to carry out the

multiplication between input data and the numbers “2” and “3”.

Figure 6: MixColumn

Multiplier 2 is designed by using shift block where left shift is applied to input data which results in multiplication by

number “2” as shown in Figure 7.

Figure 7: Multiplier 2

While Multiplier 3 is designed by dividing the number “3” into (2+1) where multiplication of data by number “2” is

done by single left shift and the resultant number is then added to itself by using XOR operation as shown in Figure 8.

Figure 8: Multiplier 3

In both multipliers in order to satisfy the irreducible condition, the shifted data is XORed with the constant “27” (dec)

in hex it is “1b” [2]. The mod 27 must be applied on the results of the multiplication in order to get the number within the

range of 255. The MCode block is then designed to select the multiplication result “x” or “y”, which is less than 255. It is

1 In1

 2 In2

 3 In3

 4 In4

 1
Out1

XOR

Logical

X<<1

Shift1

X<<
1
Shift2

x

y
z

MCode

a

b
a^b

Expression

27
constant

 1
out1

 1
In1

X<<1

Shift1

X<<1

Shift2

x

y
z

MCode

a

b
a^b

Expression

27
constant

 1
out1

 1
In1

a

b
a^b

Expression

Asian Journal of Applied Sciences (ISSN: 2321 – 0893)

Volume 02 – Issue 02, April 2014

Asian Online Journals (www.ajouronline.com) 196

programmed by the following code.

Function z = x1max(x, y)

if x < 256

z = x

4.3 AddRoundKey

AddRoundKey transformation receives 16 bytes of data from MixColumn and performs XORing with the Round

Keys. Round Keys are taken from FIPS-197 [2], converted to decimal numbers and are provided on the fly in the form of

constants as shown in Figure 9. Here the expression blocks are used for XORing.

Figure 9: AddRoundKey

5. VALIDATION

Result outputs and behavior of design is verified by giving the pre-defined test vectors defined in AES FIP-197 [15]

against standard AES output for testing and validation. Each module is implemented and validated individually. The

functionality of each step is tested and verified one by one. Then the verification of output of each round is performed

and validated the results after combining all the rounds in the main module.

6. IMPLEMENTATION RESULTS

Hardware implementation results are targeted for Xilinx Virtex-6 xc6vsx315t-3ff1156 FPGA. The design has been

implemented using Xilinx System Generator tool in MATLAB to generate verilog code (.v file) alongwith test bench are
finally synthesized and simulated using Xilinx ISE Foundation 13.1 and Mentor Graphic ModelSim, respectively. 128-bit

AES pipeline architecture occupies 80 BRAM’s for the implementation of SubByte and utilized 380 Slices for the

remaining logic. The design operates on maximum frequency of 288.19MHz and offers high throughput of 36.864 Gbps

as compared to previously reported designs.

Table 1 details the comparison results of previous AES implementations using HLL on different platforms.

Parameters chosen for comparison are platform, to clearly indicate different high level implementation platforms, Data-

path to indicate numbers of bit simultaneously processed by design. Operating frequency indicates maximum operational

frequency of design and throughput to indicate performance of design.

It’s evident from Table 1 that our performance results of proposed architecture gives better resource utilization and

offers greater operating frequency as compared to all other previously reported high-level language tool implementations

of AES. Mali et al [4] presents 128-bit AES implementation on Handle-C environment. This design operates at the
maximum frequency of 74.4MHz and offers throughput of 7.76(Mbit/s). M. Askar et al. [5] presented 128-bit AES

implementation using System C tool and System Crafter tool to translate the System C descriptions into hardware. It

takes 153 machine cycles to process whole data and throughput of 90(Mbit/s). It reported 178 numbers of occupied slices

for MixColumn and 197 number of slices for the implementation of ShiftRow, whereas our approach gives 380 slices for

the whole architecture of AES. Osvik et al [9] previously reported 8-bit AES implementation on AVR and 32-bit AES

a

b
a^b

Expression1

 1 In1

 1
out1 160

a

b
a^b

Expression2

 2 In2

 2
out2 136

a

b
a^b

Expression3

 3 In3

3

out3 35

a

b
a^b

Expression4

 4 In4

 4
out4 42

a

b
a^b

Expression13

 13 In13

 13
out13 23

a

b
a^b

Expression14

 14 In14

 14
out14 117

a

b
a^b

Expression15

 15 In15

15

out15 57

a

b
a^b

Expression16

 16 In16

16

out16 5

Asian Journal of Applied Sciences (ISSN: 2321 – 0893)

Volume 02 – Issue 02, April 2014

Asian Online Journals (www.ajouronline.com) 197

architecture on ARM platform that operates on the frequency of 124.6 cycles/byte and 34 cycles/byte respectively. Babu

et al [10] implemented 128-bit architecture of AES using custom instruction method provided by ARM 7 with Keil

platform. Hasamnis et al. [11] has given the high-level design architecture for 128-bit AES implementation where the

algorithm is controlled through C-code written in NIOS II IDE that operates on frequency of 217.31020M Cycles. Next,

Bos et al [12] reported the 128-bit AES implementation on NVIDIA graphics processing units (GPUs) and the Cell

broadband engine. The GPU implementation delivers the throughput of 0.17 cycles per byte for encryption module and
the Cell broadband engine offer the speed of 11.7 cycles per byte. In Biglari et al [13], the 128-bit pipeline architecture of

AES is given on Maestro platform. This work presents tightly coupled encryption and round key generation modules in

the main encryption module that enables the design to reach a throughput of 12.8 Gbps and runs at the speed of 100MHz.

At the end, Mourad et al [14] presents the methodology which maps the AES design described in a high level language,

Handel-C, to FPGA for low area consideration. This design reported 437 slices for encryption and offers the throughput

of 1.716 Gbps.

All the implementations discussed above are not efficient enough for high speed applications as effective frequency

of these designs ranges from 34 to 153 machine cycles while our design frequency is 288.19MHz. So, it is concluded that

this design is faster than the other reported implementation of AES. In addition, the design utilized minimum number of

resources i.e. 380 slices and offers high throughput of 36.864 Gbps as compared to previous one .

Table 1: Comparison Results of AES

7. CONCLUSION

In this work we present efficient implementation of AES in term of area and speed using High Level Language tool.

Our methodology not only reduces the overall resource utilization but also provide good enough clock frequency. It

provides the user friendly design for Matlab users with very short development time and better performance as compared

to any software and hardware-software co-design implementations. The important feature of this work is that so far no

any implementation of AES has been reported on Xilinx System Generator.

8. REFERENCES

[1] N. A. Saqib, C. K. Koc, A .D. Pérez, F. Rodriguez-Henriquez, “Cryptographic Algorithms on Reconfigurable Hardware”, Signals

and Communication Technology, Springer, vol. 26, pp. 362, 2007.
[2] M. Mozaffari-Kermani, A. Reyhani-Masoleh, "Efficient and High-Performance Parallel Hardware Architectures for the AES-

GCM," IEEE Transactions on Computers, vol. 61, no. 8, pp. 1165-1178, Aug. 2012.
[3] E. El-Araby, Saumil G. Merchant, T. El-Ghazawi, "A Framework for Evaluating High-Level Design Methodologies for High-

Performance Reconfigurable Computers," IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1, pp. 33-45, Jan.
2011.

Implementation

Platform

Data-Path

Frequency

Throughp

ut
Mali et al [4] Handel-C 128 74.4MHz 7.76(Mbit/s)

Askar et al [5] SystemC 128 153 Machine Cycles 90(Mbit/s)

Osvik et al [9] AVR 8 124.6 cycles/byte -

Osvik et al [9] ARM 32 34 cycles/byte -

Babu et al [10] ARM 128 - -

Hasamnis et al [11] NIOS II IDE 128 217.31020M Cycles -

Bos et al [12] NVIDIA
(GPUs)

128 - 0.17
cycles/byte

Bos et al [12] Cell broadband
engine

128 11.7 cycles/byte -

Biglari et al [13] Maestro 128 100 MHz 12.8 Gbps

Mourad et al [14] Handel-C 128 - 1.716 Gbps

Our Implementation

AES-128

System
Generator

32 288.19MHz 36.864 Gbps

http://www.springer.com/series/4748
http://www.springer.com/series/4748

Asian Journal of Applied Sciences (ISSN: 2321 – 0893)

Volume 02 – Issue 02, April 2014

Asian Online Journals (www.ajouronline.com) 198

[4] M. Mali, F. Novak and A. Biasizzo, “Hardware Implementation of AES Algorithm”, Journal of Electrical Engineering, vol. 56,
pp 265–269, 2005.

[5] M. Askar and T. Egemen, “Design and SystemC Implementation of a Crypto Processor for AES and DES Algorithms”,
Information Security and Cryptology Conference with International Participation, Dec 2007.

[6] M. Lukowiak, S. Radziszowski and J. Vallino and C. Wood, “Cybersecurity Education: Bridging the Gap Between Hardware and

Software Domains”.
[7] F. Oboril, I. Sagar, M. B. Tahoori, "A-SOFT-AES: Self-adaptive software-implemented fault-tolerance for AES", On-Line

Testing Symposium (IOLTS), IEEE 19th International, pp.104-109, 8-10 July 2013.
[8] Y. Wang, Y. Ha, "FPGA-Based 40.9-Gbits/s Masked AES with Area Optimization for Storage Area Network", Circuits and

Systems II: Express Briefs, IEEE Transactions, vol.60, no.1, pp.36-40, Jan 2013.
[9] D. Osvik, J. Bos, D. Stefan and D. Canright, “Fast Software AES Encryption”, FSE'10 Proceedings of 17th International

Conference on Fast Software Encryption, pp 75-93, 2010.
[10] T. Babu, K. Murthy and G. Sunil, “AES Algorithm Implementation using ARM Processor”, 2nd International Conference and

workshop on Emerging Trends in Technology (ICWET) Proceedings published by International Journal of Computer
Applications (IJCA), 2011

[11] M. Hasamnis, P. Jambhulkar and S. Limaye, “Implementation of AES as a Custom”, Advanced Computing: An International
Journal (ACIJ), vol.3, No.4, July 2012.

[12] J. Bos, D. Osvik, D. Stefan, “Fast Implementations of AES on Various Platforms”, IACR Cryptology ePrint Archive, vol. 501,
2009.

[13] M. Biglari, E. Qasemi, B. Pourmohseni, "Maestro: A high performance AES encryption/decryption system", Computer
Architecture and Digital Systems (CADS), 17th CSI International Symposium, pp.145-148, 30-31 Oct. 2013.

[14] O. Mourad, S. Lotfy, M. Noureddine, B. Ahmed, T. Camel, "AES Embedded Hardware Implementation", Adaptive Hardware
and Systems, Second NASA/ESA Conference, pp.103-109, 5-8 Aug. 2007.

[15] FIPS-197, “Federal Information Processing Standards Publication FIPS-197, Advanced Encryption Standard (AES)”,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, October 1999.

[16] N.Anitha Christy and P.Karthigaikumar, “FPGA Implementation of AES Algorithm using Composite Field Arithmetic”,
International Conference on Devices, Circuits and Systems (ICDCS), pp. 713-717, 2012.

[17] A. C. Zigiotto, R. d'Amore, "A Low-Cost FPGA Implementation of the Advanced Encryption Standard Algorithm," 15th
Symposium on Integrated Circuits and Systems Design, pp.191, 2002.

[18] S. Qu, G. Shou, Y. Hu, Z. Guo and Z. Qian, “High Throughput Pipelined Implementation of AES on FPGA”, International
Symposium on Information Engineering and Electronic Commerce, pp. 542-545, 2009.

[19] V. Elamaran and G. Rajkumar, “FPGA Implementation of Point Processes Using Xilinx System Generator”, Journal of
Theoretical and Applied Information Technology, vol. 41,pp. 201-206, July 2012.

http://www.informatik.uni-trier.de/~ley/pers/hd/b/Bos:Joppe_W=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Stefan:Deian.html
http://www.informatik.uni-trier.de/~ley/db/journals/iacr/iacr2009.html#BosOS09

