Kind of Weak Separation Axioms by D_ω, $D_{\alpha-\omega}$, $D_{\text{pre}-\omega}$, $D_{b-\omega}$
and $D_{\beta-\omega}$ – Sets

Mustafa H. Hadi
(Babylon/ Hillah, Iraq)
University of Babylon, College of Education for Pure Science,
Mathematics Department
Email: mustafahh1984 [AT] uobabylon.edu.iq

Abstract---- In this paper we define new types of sets we call them D_ω, $D_{\alpha-\omega}$, $D_{\text{pre}-\omega}$, $D_{b-\omega}$ and $D_{\beta-\omega}$ – sets and use them to define some associative separation axioms. Some theorems about the relation between them and the weak separation axioms introduced in [5] are proved, with some other simple theorems.

Keywords--- Separation axioms, weak open sets, T_1 spaces.

1. Introduction

Throughout this paper, (X,T) stands for topological space. Let (X,T) be a topological space and A a subset of X. A point x in X is called condensation point of A if for each U in T with x in U, the set $U \cap A$ is uncountable [6]. In 1982 the ω – closed set was first introduced by H. Z. Hedeb in [6], and he defined it as: A is ω – closed if it contains all its condensation points and the ω – open set is the complement of the ω – closed set. Equivalently, a subset W of a space (X,T), is ω – open if and only if for each $x \in W$, there exists $U \in T$ such that $x \in U$ and $U \cap W$ is countable. The collection of all ω – open sets of (X,T) denoted T_ω form topology on X and it is finer than T. Several characterizations of ω – closed sets were provided in [1,6,7].

In [3,8,9] some authors introduced $\alpha – open$, pre – open, b – open, and β – open sets. On the other hand in [10] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced the notions $\alpha – open$, pre – open, $\beta – open$, and $b – open$ sets in topological spaces. In [2,5] used the $\omega – open$ sets to define types of weak separation axioms called $\omega – R_0$, $\omega – R_1$ and $\omega^+ – T_1$ spaces. They defined them as follows:

Definition 1.1. [10] A subset A of a space X is called:

1. $\alpha – \omega$ open if $A \subseteq \text{int}_\omega(\text{cl}(\text{int}_\omega(A)))$ and the complement of the $\alpha – \omega$ open set is called $\alpha – \omega$ – closed set.
2. pre – ω open if $A \subseteq \text{int}_\omega(\text{cl}(A))$ and the complement of the pre – ω – open set is called pre – ω – closed set.
3. $b – \omega$ open if $A \subseteq \text{int}_\omega(\text{cl}(A)) \cup \text{cl}(\text{int}_\omega(A))$ and the complement of the $b – \omega$ – open set is called $b – \omega$ – closed set.
4. $\beta – \omega$ open if $A \subseteq \text{cl}(\text{int}_\omega(\text{cl}(A)))$ and the complement of the $\beta – \omega$ – open set is called $\beta – \omega$ – closed set.

In [10] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced relationships among the weak open sets above by the lemma below:

Lemma 1.2. [10] In any topological space:

1. Any open set is ω – open.
2. Any ω – open set is α – ω – open.
3. Any $\alpha – \omega$ – open set is pre – ω – open.
4. Any pre – ω – open set is b – ω – open.
5. Any b – ω – open set is β – ω – open.
The converse is not true [10].

For our results in this paper we need the following definitions:

Definition 1.3. [10] A subset A of a space X is called
1. An $\omega - t -$ set, if $\operatorname{int}(A) = \operatorname{int}_\omega (\operatorname{cl}(A))$.
2. An $\omega - B -$ set if $A = U \cap V$, where U is an open set and V is an $\omega - t -$ set.
3. An $\omega - t_\alpha -$ set, if $\operatorname{int}(A) = \operatorname{int}_\omega (\operatorname{cl}(\operatorname{int}(A)))$.
4. An $\omega - B_\alpha -$ set if $A = U \cap V$, where U is an open set and V is an $\omega - t_\alpha -$ set.
5. An $\omega -$ set if $A = U \cap V$, where U is an open set and $\operatorname{int}(V) = \operatorname{int}_\omega (V)$.

Definition 1.4. [5] Let (X, T) be topological space. It said to be satisfy
1. The $\omega -$condition if every $\omega -$open set is $\omega - t -$set.
2. The $\omega - B_\alpha -$condition if every $\alpha -$open set is $\omega - B_\alpha -$set.
3. The $\omega - B -$condition if every pre-$\omega -$open is $\omega - B -$set.

Lemma 1.5. [10] For any subset A of a space X, We have
1. A is open if and only if A is $\omega -$open and $\omega -$set.
2. A is open If and only if A is $\alpha -$open and $\omega - B_\alpha -$set.
3. A is open if and only if A is pre-$\omega -$open and $\omega - B -$set.

Lemma 1.6. If (X, T) is a door space, then
1. Every pre-$\omega -$open set is $\omega -$open. [10]
2. Every $\beta -$ $\omega -$open set is is $b -$open.[5]

Lemma 1.7. [10] Let (X, T) be a topological space and let $A \subseteq X$. If A is $b - \omega -$open set such that $\operatorname{int}_\omega (A) = \emptyset$, then A is pre-$\omega -$open.

The classes of the sets in Definition 1.1 are larger than that sets in [3,8,9]. In [5] we introduce some weak separation axioms by utilizing the notions of T. Noiri, A. Al-Omari, M. S. M. Noorani. Let us summarize them in the following definitions.

Definition 1.3.[5] Let X be a topological space. If for each $x \neq y \in X$, either there exists a set U, such that $x \in U$, $y \notin U$, or there exists a set U such that $x \notin U$, $y \in U$. Then X called
1. $\omega - T_0$ space, whenever U is $\omega -$open set in X.
2. $\alpha - \omega - T_0$ space, whenever U is $\alpha - \omega -$open set in X.
3. pre-$\omega - T_0$ space, whenever U is pre-$\omega -$open set in X.
4. $b - \omega - T_0$ space, whenever U is $b - \omega -$open set in X.
5. $\beta - \omega - T_0$ space, whenever U is $\beta - \omega -$open set in X.

Definition 1.4.[5] Let X be a topological space. For each $x \neq y \in X$, there exists a set U, such that $x \in U$, $y \notin U$, and there exists a set V such that $y \in V$, $x \notin V$, then X called
1. $\omega - T_1$ space if U is open and V is $\omega -$open sets in X.
2. $\alpha - \omega - T_1$ space if U is open and V is $\alpha - \omega -$open sets in X.
3. $\omega^* - T_1$ space [1] if U and V are $\omega -$open sets in X.
4. $\alpha - \omega^* - T_1$ space if U is ω-open and V is $\alpha - \omega -$open sets in X.
5. $\alpha - \omega^{**} - T_1$ space if U and V are $\alpha - \omega -$open sets in X.
6. pre-$\omega - T_1$ space if U is open and V is pre-$\omega -$open sets in X.
7. pre-$\omega^* - T_1$ space if U is ω-open and V is pre-$\omega -$open sets in X.
8. $\alpha -$pre-$\omega - T_1$ space if U is $\alpha - \omega -$open and V is pre-$\omega -$open sets in X.

9. pre $-\omega^{**} - T_1$ space if U and V are pre $-\omega$-open sets in X.
10. $b - \omega - T_1$ space if U is open and V is $b - \omega$-open sets in X.
11. $b - \omega^* - T_1$ space if U is ω-open and V is $b - \omega$-open sets in X.
12. $\alpha - b - \omega - T_1$ space if U is $\alpha - \omega$-open and V is $b - \omega$-open sets in X.
13. pre $- b - \omega - T_1$ space if U is pre $-\omega$-open and V is $b - \omega$-open sets in X.
14. $b - \omega^{**} - T_1$ space if U and V are $b - \omega$-open sets in X.
15. $\beta - \omega - T_1$ space if U is open and V is $\beta - \omega$-open sets in X.
16. $\beta - \omega^* - T_1$ space if U is ω-open and V is $\beta - \omega$-open sets in X.
17. $\alpha - \beta - \omega - T_1$ space if U is $\alpha - \omega$-open and V is $\beta - \omega$-open sets in X.
18. $\alpha - \beta - \omega - T_1$ space if U is $\alpha - \omega$-open and V is $\beta - \omega$-open sets in X.
19. $\beta - \omega^{**} - T_1$ space if U and V are $\beta - \omega$-open sets in X.
20. $b - \beta - \omega - T_1$ space if U is $b - \omega$-open and V is $\beta - \omega$-open sets in X.

Definition 1.5. [5] Let X be a topological space. And for each $x \neq y \in X$ there exist two disjoint sets U and V with $x \in U$ and $y \in V$, then X is called:
1. $\omega - T_2$ space if U is open and V is ω-open sets in X.
2. $\alpha - \omega - T_2$ space if U is open and V is $\alpha - \omega$-open sets in X.
3. $\omega^* - T_2$ space if U and V are ω-open sets in X.
4. $\alpha - \omega^* - T_2$ space if U is ω-open and V is $\alpha - \omega$-open sets in X.
5. $\alpha - \omega^{**} - T_2$ space if U and V are $\alpha - \omega$-open sets in X.
6. pre $-\omega - T_2$ space if U is open and V is pre $-\omega$-open sets in X.
7. pre $-\omega^* - T_2$ space if U is ω-open and V is pre $-\omega$-open sets in X.
8. $\alpha - \omega - T_2$ space if U is α-open and V is ω-open sets in X.
9. pre $-\omega^{**} - T_2$ space if U and V are pre $-\omega$-open sets in X.
10. $b - \omega - T_2$ space if U is open and V is $b - \omega$-open sets in X.
11. $b - \omega^* - T_2$ space if U is ω-open and V is $b - \omega$-open sets in X.
12. $\alpha - b - \omega - T_2$ space if U is $\alpha - \omega$-open and V is $b - \omega$-open sets in X.
13. pre $- b - \omega - T_2$ space if U is pre $-\omega$-open and V is $b - \omega$-open sets in X.
14. $b - \omega^{**} - T_2$ space if U and V are $b - \omega$-open sets in X.
15. $\beta - \omega - T_2$ space if U is open and V is $\beta - \omega$-open sets in X.
16. $\beta - \omega^* - T_2$ space if U is ω-open and V is $\beta - \omega$-open sets in X.
17. $\alpha - \beta - \omega - T_2$ space if U is $\alpha - \omega$-open and V is $\beta - \omega$-open sets in X.
18. pre$-\beta - \omega - T_2$ space if U is pre $-\omega$-open and V is $\beta - \omega$-open sets in X.
19. $\beta - \omega^{**} - T_2$ space if U and V are $\beta - \omega$-open sets in X.
20. $b - \beta - \omega - T_2$ space if U is $b - \omega$-open and V is $\beta - \omega$-open sets in X.

2. D_ω, $D_{\alpha - \omega}$, $D_{\text{pre} - \omega}$, $D_{b - \omega}$ AND $D_{\beta - \omega}$ --SETS

In this article we shall define new types of sets and use them to define new spaces with associative separation axioms.
Definition 2.1. A subset A of a topological space (X, T) is called D–set [4] (resp. D_{ω}–set, $D_{\alpha-\omega}$–set, $D_{\text{pre}-\omega}$–set, $D_{b-\omega}$–set, $D_{\beta-\omega}$–set). If there are two open (resp. ω–open, α–ω–open, pre–ω–open, β–ω–open, and b–ω–open) sets U and V with $U \neq X$ and $A = U \setminus V$.

Remark 2.2. It is true that every ω–open, (resp. α–ω–open, pre–ω–open, b–ω–open, and β–ω–open) set $U \neq X$ is D_{ω}–set (resp. $D_{\alpha-\omega}$–set, $D_{\text{pre}-\omega}$–set, $D_{b-\omega}$–set, and $D_{\beta-\omega}$–set) if $A = U$ and $V = \emptyset$.

Using Definition 2.1 and Lemma 1.2, Lemma 1.6, and Lemma 1.5 we can easily prove the following Propositions:

Proposition 2.3. In any topological space X.
1. Any D–set is D_{ω}–set.
2. Any D_{α}–set is $D_{\alpha-\omega}$–set.
3. Any $D_{\alpha-\omega}$–set is $D_{\text{pre}-\omega}$–set.
4. Any $D_{\text{pre}-\omega}$–set is $D_{b-\omega}$–set.
5. Any $D_{b-\omega}$–set is $D_{\beta-\omega}$–set.

Proposition 2.4. In any topological door space:
1. Any $D_{\text{pre}-\omega}$–set is D_{ω}–set.
2. Any $D_{\beta-\omega}$–set is $D_{b-\omega}$–set.

Proposition 2.5. In any topological space satisfies ω–condition. Any D_{ω}–set is D–set.

Proposition 2.6. In any topological space satisfies ω–α–condition. Any $D_{\alpha-\omega}$–set is D–set.

Proposition 2.7. In any topological space satisfies ω–β–condition. Any $D_{\text{pre}-\omega}$–set is D–set.

Proposition 2.8. In any topological space. Any $D_{b-\omega}$–set with empty ω–interior is $D_{\text{pre}-\omega}$–set.

Proof:
Let X be a topological space, and let A be a $D_{b-\omega}$–set with empty ω–interior in X, then there are two b–ω–open which are by Lemma 1.7 also pre–ω–open sets U and V with $U \neq X$, and $A = U \setminus V$. Similarly we can prove the other cases.

From the lemmas above we can get the following figure:

![Figure 1: Relation among the weak D–sets](image-url)
Utilizing the weak $D_ω$ sets we can define our separation axioms as follows:

Definition 3.1. Let X be a topological space. If $x \neq y \in X$, either there exists a set U, such that $x \in U$, $y \in U$, or there exists a set U such that $x \notin U$, $y \notin U$. Then X called

1. $ω - D₀$ space, whenever U is $D_ω$ - set in X.
2. $α - ω - D₀$ space, whenever U is $D_{α-ω}$ - set in X.
3. $pre-ω - D₀$ space, whenever U is $D_{pre-ω}$ - set in X.
4. $b - ω - D₀$ space, whenever U is $D_{b-ω}$ - set in X.
5. $β - ω - D₀$ space, whenever U is $D_{β-ω}$ - set in X.

Definition 3.2. We can define the spaces $ω - D₁$, $α - ω - D₁$, $α - ω^* - D₁$, $pre - ω - D₁$, $b - ω - D₁$, $β - ω - D₁$, for $i = 0, 1, 2$. And $ω^* - D₁$, $α - ω^* - D₁$, $α - ω** - D₁$, $pre - ω^* - D₁$, $α - ω** - D₁$, $pre - ω** - D₁$, $b - ω^* - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, and $b - β - ω - D₁$, for $i = 1, 2$, by replacing the sets: open, $α$ - open, $α$ - open, $β$ - open, open, $β$ - open, $β$ - open, by the D - set, $D_{α-ω}$ - set, $D_{β-ω}$ - set, $D_{pre-ω}$ - set, $D_{b-ω}$ - set, and $D_{β-ω}$ - set respectively, in Definition 1.3, Definition 1.4, and Definition 1.5.

Remark 3.3. For the relations among weak T_5s we can make a figures coincide with these for weak T_5s spaces in [5].

Theorem 3.4. Let (X, T) be a topological space:

1. If (X, T) is $ω - T₀$, (resp. $α - ω - T₀$, $pre - ω - T₀$, $b - ω - T₀$, $β - ω - T₀$), for $i = 0, 1, 2$, then $ω^* - T₀$, $α - ω^* - T₀$, $α - ω** - T₀$, $pre - ω^* - T₀$, $b - ω^* - T₀$, $β - ω** - T₀$, $β - ω** - T₀$, $α - β - ω - T₀$, $β - ω** - T₀$, $α - β - ω - T₀$, and $b - β - ω - T₀$, for $i = 1, 2$, then it is $ω - D₁$, (resp. $α - ω - D₁$, $pre - ω - D₁$, $b - ω - D₁$, $β - ω - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, and $b - β - ω - D₁$, for $i = 1, 2$).

2. If (X, T) is $ω - D₁$, (resp. $α - ω - D₁$, $ω^* - D₁$, $α - ω^* - D₁$, $α - ω** - D₁$, $pre - ω - D₁$, $pre - ω^* - D₁$, $pre - ω** - D₁$, $b - ω^* - D₁$, $β - ω^* - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, and $b - β - ω - D₁$, for $i = 1, 2$).

Proof:

1. Follows immediately by the Remark 3.3.
2. Directly from Definition 2.1, Definition 3.1, and Definition 3.2.

By the following theorems we recognize the importance of the weak D_1-spaces, for $i = 0, 1, 2$.

Theorem 3.5. Let (X, T) be a topological space. Then X is $ω - D₁$, (resp. $α - ω - D₁$, $ω^* - D₁$, $α - ω^* - D₁$, $α - ω** - D₁$, $pre - ω - D₁$, $pre - ω^* - D₁$, $pre - ω** - D₁$, $b - ω - D₁$, $β - ω - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, $α - β - ω - D₁$, $β - ω** - D₁$, $β - ω** - D₁$, and $b - β - ω - D₁$, for $i = 1, 2$).

Proof:

The proof of the forward direction is a step by step similar to that of Theorem 4.8 in [4]. The inverse direction follows immediately from (2) of theorem 3.4 above.

Theorem 3.6. Let (X, T), be a topological space. Then X is $α - ω - T₀$, (resp. $ω - T₀$, $pre - ω - T₀$, $b - ω - T₀$, $β - ω - T₀$) if and only if it is $α - ω - D₀$ (resp. $ω - D₀$, $pre - ω - D₀$, $b - ω - D₀$, $β - ω - D₀$).
Proof:

The forward direction follows immediately from (1) of Theorem 3.4. For the opposite side let X be $\alpha - \omega - D_0$, so for $x \neq y \in X$, there is a $D_{\alpha - \omega} -$ set U such that $x \in U$, but $y \notin U$. Then by the definition of the $D_{\alpha - \omega} -$ set, $U = V \setminus W$, where V and $W \neq X$ are $\alpha - \omega -$ open sets. Now if $x \in W$, but $y \notin W$, and W is an $\alpha - \omega -$ open set in X. So X is $\alpha - \omega - T_0$. Then whenever $x \in U = W \setminus V$ and $y \in (W \cap V)$. Then $y \notin V$, and $x \notin V$. Thus X is $\alpha - \omega - T_0$ space.

For the following definition we need the definition of the $\omega -$neighbourhood from [5]:

Definition 3.7. [5] Let (X, T) be a topological space. A subset U of X is $\omega -$neighbourhood of a point $x \in X$, if and only if there exists an $\omega -$open set V such that $x \in V \subseteq U$.

Definition 3.8. A point $x \in X$ which has only $\alpha -$neighbourhood is called an $\alpha -$net point.

Proposition 3.9. Let (X, T) be a topological space If X is $\omega - D_1$ space, then it has no $\omega -$net point.

Proof:

Since X is $\omega - D_1$ so each point x of X contained in a $D_{\omega} -$ set $W = U \setminus V$, $U \neq X$, and U and V are $\omega -$open sets. So it contained in the $\omega -$open set $U \neq X$, which implies x is no $\omega -$net point.

Theorem 3.10. Let X be a door topological space, has no $\omega -$net point. Then it is $\omega - D_1$ space.

Proof:

Since (X, T) be a door topological space, so for each point x in X, (x) is either $\omega -$open or $\omega -$closed. This implies for each $x \neq y \in X$, at least one of them say x has $\omega -$neighbourhood $U \neq X$ containing x but not y, U is $D_{\omega} -$ set. If X has no $\omega -$net point, then y is not $\omega -$net point, so there is an $\omega -$neighbourhood $V \neq X$ of y. Thus $V \setminus U$ is $D_{\omega} -$ set containing y but not x. Hence X is $\omega - D_1$ space.

To introduce Theorem 3.12 we need the following Definition from [5]:

Definition 3.11. [5] Let (X, σ) and (Y, τ) be two topological spaces. A map $f: (X, \sigma) \rightarrow (Y, \tau)$ is called ω-continuous (resp. $\alpha - \omega$-continuous, $\alpha - \omega -$precontinuous, $\beta - \omega$-continuous) at $x \in X$, if and only if for each $\omega -$open (resp. $\alpha - \omega$-open, $\alpha - \omega -$preopen, $\beta - \omega$-open) set V containing $f(x)$, there exists an $\omega -$open (resp. $\alpha - \omega$-open, $\alpha - \omega -$preopen, $\beta - \omega$-open) set U containing x, such that $f(U) \subseteq V$. If f is $\omega -$ continuous (resp. $\alpha - \omega$-continuous, $\alpha - \omega -$precontinuous, $\beta - \omega$-continuous) at each $x \in X$, we call it ω-continuous (resp. $\alpha - \omega$-continuous, $\alpha - \omega -$precontinuous, $\beta - \omega$-continuous).

Theorem 3.12. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is ω-continuous (resp. $\alpha - \omega$-continuous , $\alpha - \omega$-precontinuous, $\beta - \omega$-continuous, $\beta - \omega$-precontinuous) onto function and A is $D_{\omega} -$ set (resp. $D_{\alpha - \omega} -$ set, $D_{\alpha - \omega} -$ set, $D_{\beta - \omega} -$ set) in Y, then $f^{-1}(A)$ is also $D_{\omega} -$ set (resp. $D_{\alpha - \omega} -$ set, $D_{\alpha - \omega} -$ set, $D_{\beta - \omega} -$ set) in X.

Proof:

Let A be $D_{\omega} -$ set in Y, so there are two $\omega -$open sets $U \neq Y, V$ in Y such that $A = U \setminus V$. Then by the ω-continuous function definition, we have $f^{-1}(U) = f^{-1}(V)$ are $\omega -$open sets in X, such that $f^{-1}(U) \neq X$. And $f^{-1}(A) = f^{-1}(U \setminus V) = f^{-1}(U) \setminus f^{-1}(V)$ is $D_{\omega} -$ set in X.

The other cases are the same.

Theorem 3.13. For any two topological spaces (X, τ) and (Y, σ).

1. If (Y, σ) be an $\alpha^* - D_1$ and $f: (X, \tau) \rightarrow (Y, \sigma)$ is an ω-continuous bijection, then (X, τ) is $\alpha^* - D_1$.
2. If (Y, σ) be an, $\alpha - \omega^*$ - D_1 and $f: (X, \tau) \rightarrow (Y, \sigma)$ is an $\alpha - \omega$-continuous bijection, then (X, τ) is $\alpha - \omega^* - D_1$.
3. If (Y, σ) be an, $\alpha - \omega^*$ - D_1 and $f: (X, \tau) \rightarrow (Y, \sigma)$ is a $\alpha - \omega$-continuous bijection, then (X, τ) is $\alpha - \omega^* - D_1$.
4. If (Y, σ) be an, $\beta - \omega^*$ - D_1 and $f: (X, \tau) \rightarrow (Y, \sigma)$ is a $\beta - \omega$-continuous bijection, then (X, τ) is $\beta - \omega^* - D_1$.
5. If (Y, σ) be an, $\beta - \omega^*$ - D_1 and $f: (X, \tau) \rightarrow (Y, \sigma)$ is a $\beta - \omega$-continuous bijection, then (X, τ) is $\beta - \omega^* - D_1$.

Proof of (1):
Let Y be an $\omega^* - D_1$ space. Let $x \neq y \in X$, since f is bijective and Y is $\omega^* - D_1$ space, so there exist two D_ω - sets U and V such that U containing $f(x)$ but not $f(y)$ and V containing $f(y)$ but not $f(x)$, then by Theorem 3.12, $f^{-1}(U)$ and $f^{-1}(V)$ are D_ω - sets such that $f^{-1}(U)$ containing x but not y and $f^{-1}(V)$ containing y but not x. So (X, τ) is $\omega^* - D_1$.

By the same way we can prove the other cases.

Theorem 3.14. A topological space (X, τ) is $\omega^* - D_1$ (resp. $\alpha - \omega^* - D_1$, $\beta - \omega^* - D_1$) if and only if only for each pair of distinct points $x, y \in X$, there exists an ω - continuous (resp. α - ω - continuous, β - ω - continuous, $\beta - \omega$ - ω - continuous) onto function $f : (X, \tau) \to (Y, \sigma)$ such that $f(x)$ and $f(y)$ are distinct, where (Y, σ) is $\omega^* - D_1$ (resp. $\alpha - \omega^* - D_1$, $\beta - \omega^* - D_1$) space.

Proof:

Let (X, τ) be an $\omega^* - D_1$, let $x, y \in X$, then we can find an onto function $f : (X, \tau) \to (Y, \sigma)$, where (Y, σ) is an $\omega^* - D_1$ space defined by $f(x) = x$, such that $f(x)$ and $f(y)$ distinct. For the opposite direction. Let $x \neq y \in X$, and $f : (X, \tau) \to (Y, \sigma)$ be an onto ω - continuous function such that $f(x)$ and $f(y)$ distinct, and (Y, σ) is $\omega^* - D_1$ space. We must prove (X, τ) is $\omega^* - D_1$ space. Since (Y, σ) is an $\omega^* - D_1$ space and $f(x)$ and $f(y)$ are distinct points in it, then by Theorem 3.5 there are two distinct disjoint D_ω - sets U and V in Y such that U containing $f(x)$ and V containing $f(y)$. Then since f is ω - continuous function so $f^{-1}(U)$ and $f^{-1}(V)$ are two disjoint D_ω - sets in X such that $f^{-1}(U)$ containing x and $f^{-1}(V)$ containing y. So (X, τ) is $\omega^* - D_1$, and by Theorem 3.5. again , we get (X, τ) is $\omega^* - D_1$ space.

4. REFERENCES

