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_________________________________________________________________________________ 

ABSTRACT--- Structure elucidation of the 16 isomeric linear aldohexoses is approached en block, in a clear, logic, 

concise, coherent, manner. The main premise, or paradigm, of this paper is structure elucidation of (+)-tartaric acid 

by Bijvoet. Other premise is a preparative method elaborated by Baer and Fischer, whose instructive potential is 

disclosed for the first time in this paper. It concerns elucidation of configuration of C-2 by using di-O-isopropylidenic 

derivatives of hexitols.  

_____________________________________________________________________________________________ 

 
1. INTRODUCTION 

 

Saccharides (carbohydrates) are polyhydroxy-aldehydes or -ketones with a large distribution in living matter. 

They were divided, according to their molecular weight and their cleavability to hydrolysis, in monosaccharides, 

oligosaccharides (di-, tri-, tetra-, etc., decasaccharides) and polysaccharides. Oligo- and polysaccharides are condensed 

form of monosaccharides. As a function of their molecular weight, monosaccharides have been classified in: trioses (C3), 

tetroses (C4), pentoses (C5), hexoses (C6), etc., undecoses (C11) [1,2]. Amongst common natural compounds, aldehido-

saccharides are the most susceptible to oxidation. Due to redox characteristics of functional chemical groups of 

saccharides, especially aldehyde and terminal hydroxyl group, these compounds can be converted to poliols or acidic 

derivatives, mono- or dicarboxylic acids. In this way, new representatives have been added to saccharides. 

It has been mathematically demonstrated that monosaccharides are the most versatile compounds concerning 

their molecular diversity of oligo- and polymers [3,4,5]. A group of six different monosaccharides can form >1012 

different hexaosides, the variables being type of the ring, type of configuration, type of branching and diastereomerism 

[3,5]. With six aminoacids one can construct <105 hexapeptides [3,5]. Moreover, saccharidic oligo- and polymers are 

constructed according to a mathematical principle – repetition arrangement, which was regained in genetics [6], 

chemistry, linguistics [4,7]. (It has been hypothetically speculated that this phenomenon was illustrated for the first time 

in Homer’s Iliad [7,8]). 

 

2. PREMISES 
The following premises are necessary for en block structure elucidation of the 16 isomeric linear aldohexoses. 

 

2.1. LINEAR ALDOHEXOSES 
Linear aldohexoses are aldohexoses that can be converted to n-hexane by strong reduction reaction [9] or to n-

heptanoic acid by reaction with hydrogen cyanide and reduction [10,11]. Aldehyde function was indicated by Schiff 

(1870), although the configurations of hydroxyl groups was equivocal [12] (Fig. 1). According to tetrahedrical model of 

carbon atom, elaborated by Van’t Hoff (1874) [13] and LeBel (1874) [14], and confirmed by E. Fischer [15,16], 16 

isomers can be imagined for a compound containing four asymmetric carbon atoms (Fig. 2). The 16 isomers can be 

equivocally represented by one formula (Fig. 1). 
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Figure 1. Linear aldohexoses are converted to n-hexane [12] by strong reduction or to n-heptanoic acid, by reaction with 

hydrogen cyanide and strong reduction [10,11]. 
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Figure 2. 16 Isomers can be imagined for a linear aldohexose containing four asymmetric carbon atoms. 

 

2.2. CHIRALITY 
The phenomenon of chirality was discovered in biology, in connection with morphology of mollusks, especially 

spiral ones. It was noticed that mollusks, contrary to vertebrates, are devoid of planes of symetry. On the other hand, in 

every species appeared a number of enantiomorphic organisms in a characteristic ratio [17,18]. 

In chemistry, chirality was discovered in connection with polarized light [19] as well as with optically active 

compounds, i. e., natural substances that rotate the plane of polarized light – quartz [20] tartaric acid, sucrose, turpentine, 

etc [21]. 

 
2.3. C4 SACCHARIDES 

C4 Saccharides have a few remarkable properties: (A) they are the simplest monosaccharides capable of forming 

cyclic structures (rings) by hemiacetalyzation; (B) they possess chiral aldaric acids. Aldaric acids are natural or synthetic 

dicarboxylic acids; in the latter case they are produced by nitric acid oxidation of linear aldohexoses [22]. According to 

tetrahedrical model of carbon atoms, elaborated by Van’t Hoff [13] and LeBel [14], and confirmed by E. Fischer [15,16], 

three isomers are possible for a C4 linear dibasic acid containing two asymmetric carbon atoms and they were named 

tartaric acids. A saturated carbon atom is asymmetric (or chiral) when it is linked to four different substituents. 

Tartaric acids was discovered by Scheele (1770) in the sediment deposited in the vats during the grape juice 

fermentation [23]. This sediment had been called tartar and Scheele boiled tartar with chalk and then acidified the 

product with sulfuric acid. A sample of tartaric acid was prepared by fermentation by an Alsatian manufacturer, Kestner 

(1822). Kestner’s specimen had the same chemical properties as tartaric acid discovered by Scheele. However, some 

physical properties (solubility in water, crystalline form, etc.) were different [24]. Nobody, neither Kestner himself, could 

reproduce his experiment. Fortunately, he had prepared enough material so that many interested specialists could receive 

a share of it. The compound was called racemic acid by Gay-Lussac and para-tartaric acid by Berzelius. Subsequently, 

polarized light [19] and optical activity were discovered [20,21] and polarimeter was invented [25]. So, became evident 

that the acid discovered by Scheele was (+)-tartaric acid, while the compound prepared by Kestner was devoid of optical 

activity. Pasteur (1848) [26] prepared the double salt of sodium-ammonium of para-tartaric acid and then crystallized it. 

He noticed two types of crystals, that were enanthiomorphic with one another. Pasteur separated the two types of crystals 

and found out that their aqueous solutions were dextrorotary and levorotary, respectively. Consequently, the so-called 

para-tartaric acid was in fact a racemic mixture, (±)-tartaric acid. Another isomer, not cleavable by any chemical or 

biological method, was discovered also by Pasteur and called meso-tartaric acid [27]. 

The discovery of Pasteur increased the dilemma of representation, in other words the relationship between an 

optically active compound and the structural model assigned to it. This dilemma was solved by X-ray diffraction, i. e., 

zirconium Kα rays, by sodium rubidium tartrate of the dextrorotary species, and the indicated model (Fig. 3) was 

assigned to (+)-tartaric acid [28]. This configuration of (+)-tartaric acid had been attributed by E. Fischer by pure 

intuition [29]. Since (–)-tartaric acid is an enathiomer of (+)-tartaric acid, its configuration became also evident (Fig. 4). 
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Figure 3. Structural models assigned by Bijvoet et al., [28] (A, B, C) by working with sodium rubidium salt of (+)-

tartaric acid (D). 
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Figure 4. Since (–)-tartaric acid is an enathiomer of (+)-tartaric acid, its configuration became also evident. 

 
(–)-Tartaric acid is interconvertible with (+)-glyceraldehyde, and (+)-tartaric acid is related with (–)-

glyceraldehyde, either by chain elongation or chain shortening. Chain elongation is formed of a suite of reaction called 

Fischer-Kiliani synthesis [10] and chain shortening is based on Malaprade reaction [30-32]. As a result, the configuration 

of the two aldotrioses was elucidated (Fig. 5).  
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Figure 5. (–)-Tartaric acid is interconvertible with (+)-glyceraldehyde, and (+)-tartaric acid is related with (–)-

glyceraldehyde. 

 

2.4. CHAIN SHORTENING 
Chain shortening of monosaccharides [33,34] can be reckoned as being complementary to Fischer-Kiliani synthesis [10]. 

Both methods of chain shortening are based on oxidation reactions. Wohl method consist in treating the sugar with 

hydroxylamine, the oxime is dehydrated by peracetylation and then a C1 unit is cleaved as HCN, by reaction with sodium 

hydroxide [33]. Ruff degradation is based on oxidative lability of aldehydes within monosaccharides in linear form, 

which is readily transformed to carboxylic acids. The latter, as calcium salt, is oxidized to the lower sugar and carbon 

dioxide, with hydrogen peroxide in the presence of a ferrous salt [34].  

 
3. EN BLOCK APPROACH OF STRUCTURE ELUCIDATION OF LINEAR ISOMERIC 

ALDOHEXOSES 

 
Based on the above mentioned premises, the structure of the 16 isomeric aldohexoses can be simultaneosly demonstrated.  

I. Three successive chain shortening, either by Wohl [33] or Ruff [34] method,  would alternatively produce (+)-

glyceraldehyde (compounds 1-8 of Fig. 2) and (–)-glyceraldehye (compounds 9-16 of Fig. 2). Consequently, the first 

eight compounds belong to D-series, and the configuration of C-5 has been elucidated (Fig. 6). Similarly, compouns 

9-16 belong to 
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Figure 6. Three consecutive chain shortening would produce D-(+)-glyceraldehyde of eight isomeric linear aldohexoses 

and the other eight, (–)-glyceraldehyde, respectively.  

 

L-series and the configuration of their C-5 has been elucidated based on the knowledge of the configuration of 

asymmetric carbon of (–)-glyceraldehye as related to (+)-tartaric acid (see above).   
Since the 16 isomers constitute eight pairs of enanthiomers, structure elucidation of the eight isomers of D-series 

will suffice.  

II. Two consecutive chain shortening followed either by reduction or by oxidation would produce either C4 units devoid 

of optical activity (compounds 1,2,5,6, Fig. 7) or optically active C4 units (compounds 3,4,7,8, Fig. 7). In this way, 

the configuration of C-4 has been elucidated. 
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Figure 7. Two chain shortening, followed either by reduction or oxidation would produce symmetric or chiral C4 units. 

 

 

III. One chain shortening (Fig. 8), followed by either reduction or oxidation would produce symmetrical (compounds 1, 

2, 3, 4) or chiral C5 units (compounds 5, 6, 7, 8). Hence, the configuration of C-3 has been elucidated, in correlation 

with the configuration of the priorly indicated chiral carbon atoms of linear form.  

Hydrogenation of aldehyde function in compounds 1-8 (or oxidation with HNO3) (Fig. 2) would produce two 

meso-compounds: meso-allitol (or meso-allaric acid) from compound 1 and meso-galactitol (or meso-galactaric acid) 

from compound 7. The configuration of all chiral carbon atoms of compounds 1 and 7 is in this moment elucidated, 

provided a correlation of all chiral centers is taken into account. Hexitols (or aldaric acids) of compounds 2, 3, 4, 5, 

8, are all chiral, and specific methods are necessary for the elucidation of configuration of C-2. In fact, the 

correlation of all chiral carbons of linear form of aldohexoses constituted the reasoning of E. Fischer [15,16]. He 

noticed that by reversing the ends of D-mannose, the same compound was obtained, since the configuration of C-5 

and C-4 is enanthiomorphic to C-2 and C-3.  

IV. Synthesis of two important groups of natural compounds, triglycerides and phospholipids, indicated (+)- and (–)-

glyceraldehyde as ideal precursors, as well as their preparation from D- and L-mannitol, respectively [35,36]. We 

suggest that this reaction has not only a preparative but also an exceptional teaching value. We have used it for 

decades to this aim, i. e., to distinguish between diastereomeric aldohexoses that are epimeric to C-2, or as indicated 

by E. Fischer [15,16], aldohexoses producing the same osazone. If two such monosaccharides are submitted to the 

suite of reactions indicated [35,36], the result is quite different (Fig. 9): compounds 1, 3, 5, 7, of Fig. 2 give a 

mixture of (+)- and (–)-glyceraldehyde while compounds 2, 4, 6, 8, of Fig. 2 give two mole of (+)-glyceraldehyde 

per mole of sugar. The cleavage of dihydroxy-diisopropylidenic hexitol can be made by oxidation with lead 

tetraacetate [35,36] or with periodic acid [37]. 1,2:5,6-Di-O-isopropylidene-D-glucitol (sorbitol) has been 

synthesized and characterized [38,39]. 
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Figure 8. One chain shortening, followed by reduction or oxidation, would produce symmetric or chiral products. 
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Figure 9. Reduction of aldohexoses that are epimeric at C-2, followed by isopropylidenation and Malaprade oxidation, 

would produce a a mixture of enanthiomers or a unitary product. 

However, less papers dealt with its periodate oxidation, probably since the product is a racemic mixture. 

The ensemble of reactions I-IV constitute an individual and characteristic pattern for the aldohexoses 1-8, e. g., 

compound producing D-(+)-glyceraldehyde by reaction I, meso-erythritol (or meso-tartaric acid) by reaction II, D-

arabinitol (or D-arabinaric acid) by reaction III, and a racemic mixture of (+)- and (–)-glyceraldehyde by reaction IV, 

is D-(+)-glucose (5). This reasoning can be applied to all compounds 1-16 and will give specific results in every 

case. In this way it was concluded that 1 is D-allose; 2, D-altrose; 3, D-gulose; 4, D-idose; 5, D-glucose; 6, D-

mannose; 7, D-galactose; 8, D-talose, and compounds 9-16 are their enanthiomers, respectively.  

 

4. CONCLUSIONS 

 
We have presented a clear, new, en block approach of structure elucidation of linear aldohexoses, based essentially on the 

knowledge of configuration of (+)-tartaric acid as accomplished by Bijvoet. Chain shortening by Wohl or Ruff method, 

followed either by reduction or oxidation will disclose the configuration of chiral carbons C-5, C-4, C-3. The suite of 

reactions indicated by Baer and Fischer will add the knowledge of C-2. 
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