On Quasi-Left Primary and Quasi-Primary Γ-ideals in Γ-AG-Groupoids

Parote Yiarayong

Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand
Email: pairote0027 [AT] hotmail.com

ABSTRACT— The purpose of this paper is to introduce the notion of a quasi-primary ideals in Γ-AG-groupoids, we study quasi-primary and quasi-left primary ideals in Γ-AG-groupoids. Some characterizations of quasi-primary and quasi-left primary ideals are obtained. Moreover, we investigate the relationships between quasi-primary and quasi-left primary ideals in Γ-AG-groupoids. Finally, we obtain the necessary and sufficient conditions of a quasi-primary ideal to be a quasi-left primary ideal in Γ-AG-groupoids.

Keywords— Γ-AG-groupoid, Γ-LA-semigroup, Γ-ideal, quasi-primary ideal, quasi-left primary ideal.

1. INTRODUCTION

Abel-Grassmann’s groupoid (AG-groupoid) is a generalization of semigroup theory with wide range of usages in theory of flocks [6]. The fundamentals of this non-associative algebraic structure were first discovered by Kazim and Naseeruddin (1972). A groupoid S is called an AG-groupoid if it satisfies the left invertive law:

$$(ab)c = (cb)a$$

for all $a, b, c \in S$. It is interesting to note that an AG-groupoid with right identity becomes a commutative monoid [5]. This structure is closely related to a commutative semigroup. Because of containing a right identity, an AG-groupoid becomes a commutative monoid [5]. A left identity in an AG-groupoid is unique [5]. It lies between a groupoid and a commutative semigroup with wide range of applications in theory of flocks [6]. Ideals in AG-groupoids have been discussed in [4]. In 1981, the notion of Γ-semigroups was introduced by M. K. Sen. A groupoid S is called a Γ-AG-groupoid if it satisfies the left invertive law:

$$(\gamma \gamma \beta \delta) = (\gamma \beta \delta)$$

for all $a, b, c, d \in S$ and $\gamma, \delta \in \Gamma$ [3]. This structure is also known as a left almost semigroup (LA-semigroup). In this paper, we are going to investigate some interesting properties of recently discovered classes, namely Γ-AG-groupoid S always satisfies the Γ-medial law:

$$(\gamma \beta \delta) = (\gamma \beta \delta)$$

for all $a, b, c, d \in S$ and $\gamma, \beta, \delta \in \Gamma$ [3], while a Γ-AG-groupoid S with left identity e always satisfies Γ-paramedial law:

$$(\gamma \beta \delta) = (\gamma \beta \delta)$$
for all \(a,b,c,d \in S \) and \(\gamma, \beta, \delta \in \Gamma \) \([3]\). Recently T. Shah and I. Rehman have discussed \(\Gamma \)-Ideals and \(\Gamma \)-Bi-Ideals in \(\Gamma \)-AG-Groupoids.

In this paper we characterize the \(\Gamma \)-AG-groupoid. We investigate the relationships between quasi-primary and quasi-left primary ideals in \(\Gamma \)-AG-groupoids.

2. BASIC PROPERTIES

In this section we refer to \([10, 11, 12, 13]\) for some elementary aspects and quote few definitions, and essential examples to step up this study. For more details we refer to the papers in the references.

Example 2.1. \([10, 11]\) (1). Let \(S \) be an arbitrary AG-groupoid and \(\Gamma \) any non-empty set. Define a mapping \(S \times \Gamma \times S \rightarrow S \) by \(a \gamma b = ab \) for all \(a,b \in S \) and \(\gamma \in \Gamma \). It is easy to see that \(S \) is a \(\Gamma \)-AG-groupoid.

(2). Let \(\Gamma = \{1,2,3\} \). Define a mapping \(\square \times \Gamma \times \square \rightarrow \square \) by \(a \gamma b = b - \gamma - a \) for all \(a,b \in \square \) and \(\gamma \in \Gamma \) where \("-" \) is a usual subtraction of integers. Then \(\square \) is a \(\Gamma \)-AG-groupoid.

Lemma 2.2. \([10, 11]\) Every \(\Gamma \)-AG-groupoid is \(\Gamma \)-medial.

Lemma 2.3. \([10, 11]\) Let \(S \) be a \(\Gamma \)-AG-groupoid with a left identity, then \(a \gamma (b \alpha c) = b \gamma (a \alpha c) \) for all \(a,b,c \in S \) and \(\gamma, \alpha \in \Gamma \).

Definition 2.4. \([10, 11]\) Let \(S \) be a \(\Gamma \)-AG-groupoid. A nonempty subset \(A \) of \(S \) is called a sub \(\Gamma \)-AG-groupoid of \(S \) if \(A \Gamma A \subseteq A \).

Definition 2.5. \([10, 11]\) A sub \(\Gamma \)-AG-groupoid \(A \) of \(S \) is called a left (right) \(\Gamma \)-ideal of \(S \) if \(S \Gamma A \subseteq A \) (\(A \Gamma S \subseteq A \)) and is called an \(\Gamma \)-ideal if it is left as well as right \(\Gamma \)-ideal.

Lemma 2.6. \([10, 11]\) If a \(\Gamma \)-AG-groupoid \(S \) has a left identity, then every right \(\Gamma \)-ideal is a left \(\Gamma \)-ideal.

Lemma 2.7. \([10, 11]\) If \(A \) is a left \(\Gamma \)-ideal of a \(\Gamma \)-AG-groupoid \(S \) with left identity, and if for any \(a \in S \), there exists \(\gamma \in \Gamma \), then \(a \gamma A \) is a left \(\Gamma \)-ideal of \(S \).

Lemma 2.8. \([10, 11]\) If \(A \) is a proper right (left) \(\Gamma \)-ideal of a \(\Gamma \)-AG-groupoid \(S \) with left identity \(e \), then \(e \notin A \).

Lemma 2.9. \([13]\) If \(S \) is a \(\Gamma \)-AG-groupoid with left identity \(e \), then \(a \gamma b = a \beta b \) for all \(a,b \in S \) and \(\gamma, \beta \in \Gamma \).

Lemma 2.10. Let \(S \) be a \(\Gamma \)-AG-groupoid with left identity, and let \(B \) be a left \(\Gamma \)-ideal of \(S \). Then \(A \Gamma B = \{ a \gamma b : a \in A, b \in B, \gamma \in \Gamma \} \) is a left \(\Gamma \)-ideal in \(S \), where \(\emptyset \neq A \subseteq S \).
Lemma 2.11. Let S be a Γ-AG-groupoid with left identity and let $a \in S$. Then
$$a^2 \gamma S = \{a^2 \gamma s = (a \beta a) \gamma s : s \in S\}$$
is a Γ-ideal in S, where $\gamma, \beta \in \Gamma$.

Lemma 2.12. Let S be a Γ-AG-groupoid with left identity, and let A be a left Γ-ideal of S. Then $(A : \gamma : r)$ is a left Γ-ideal in S, where $(A : \gamma : r) = \{a \in S : r \gamma a \in A\}$.

Remark. Let S be a Γ-AG-groupoid and let A be a left Γ-ideal of S. It is easy to verify that $A \subseteq (A : \gamma : r)$.

Lemma 2.13. Let S be a Γ-AG-groupoid with left identity, and let A, B be left Γ-ideals of S. Then $(A : \Gamma : B)$ is a left Γ-ideal in S, where $(A : \Gamma : B) = \{r \in S : B \gamma r \subseteq A\}$.

Remark. Let S be a Γ-AG-groupoid and let A, B, C be left Γ-ideals of S. It is easy to verify that $(A : \Gamma : C) \subseteq (A : \Gamma : B)$, where $B \subseteq C$.

3. QUASI-LEFT PRIMARY AND LEFT PRIMARY Γ-IDEALS

We start with the following theorem that gives a relation between Γ-primary and quasi Γ-primary ideal in Γ-AG-groupoid. Our starting points are the following definitions:

Definition 3.1. A Γ-ideal P is called left quasi-primary if $A \Gamma B \subseteq P$ implies that
$$\left(\left(\left(\left(\left(\Gamma A\right) \Gamma A\right) \Gamma \ldots\right) \Gamma A\right) \Gamma \ldots\right) \Gamma A = A^n \subseteq P \text{ or } \left(\left(\left(\left(\left(\Gamma B\right) \Gamma B\right) \Gamma \ldots\right) \Gamma B\right) \Gamma \ldots\right) \Gamma B = B^n \subseteq P$$
for some positive integer n, where A and B are two Γ-ideals of S.

Definition 3.2. A left Γ-ideal P is called quasi-left primary if $A \Gamma B \subseteq P$ implies that
$$\left(\left(\left(\left(\left(\Gamma A\right) \Gamma A\right) \Gamma \ldots\right) \Gamma A\right) \Gamma \ldots\right) \Gamma A = A^n \subseteq P \text{ or } \left(\left(\left(\left(\left(\Gamma B\right) \Gamma B\right) \Gamma \ldots\right) \Gamma B\right) \Gamma \ldots\right) \Gamma B = B^n \subseteq P$$
for some positive integer n, where A and B are two left Γ-ideals of S.

Remark. It is easy to see that every quasi-left primary ideal is quasi-primary.
Lemma 3.3. If S is a Γ-AG-groupoid with left identity, then a left Γ-ideal P of S is quasi-left primary if and only if $a\gamma(S\beta b) \subseteq P$ implies that

$$((a\delta a)\delta a \ldots)\delta a = a^n \in P \text{ or } ((b\delta b)\delta b \ldots)\delta b = b^n \in P$$

for some positive integer n, where $\gamma, \beta, \delta \in \Gamma$ and $a, b \in S$.

Proof. Let P be a quasi-left primary left ideal of a Γ-AG-groupoid S with left identity. Now suppose that $a\gamma(S\beta b) \subseteq P$. Then by Definition of left Γ-ideal, we get $\text{ST}(a\gamma(S\beta b)) \subseteq \text{ST}P \subseteq P$ that is,

$$\text{ST}(a\gamma(S\beta b)) = (S\delta S)\Gamma(a\gamma(S\beta b))$$

$$= (S\delta a)\Gamma(S\gamma(S\beta b))$$

$$= (S\delta a)\Gamma((S\Gamma S)\gamma(S\beta b))$$

$$= (S\delta a)\Gamma((b\beta S)\gamma(S\Gamma S))$$

$$= (S\delta a)\Gamma((b\beta S)\gamma(S))$$

$$= (S\delta a)\Gamma((S\beta S)\gamma b)$$

$$= (S\delta a)\Gamma(S\gamma b)$$

for all $\delta \in \Gamma$. Since $\text{ST}(a\gamma(S\beta b)) \subseteq P$ and $\text{ST}(a\gamma(S\beta b)) = (S\delta a)\Gamma(S\gamma b)$, we have $(S\delta a)\Gamma(S\gamma b) \subseteq P$ so that $a^n = (e\delta a)^n \in (S\delta a)^n \subseteq P$ or $b^n = (eb)^n \in (S\gamma b)^n \subseteq P$, for some positive integer n. Conversely, assume that if $a\gamma(S\beta b) \subseteq P$ implies that $a^n \in P$ or $b^n \in P$ for some positive integer n, where $\gamma, \beta \in \Gamma$ and $a, b \in S$. Suppose that $A\Gamma B \subseteq P$, where A and B are left Γ-ideals of S such that $A \not\subseteq P$. Then there exists $x \in A$ such that $x^n \not\in P$, for all positive integer n. Now

$$x\gamma(S\beta y) \subseteq A\Gamma(S\Gamma B) \subseteq A\Gamma B \subseteq P,$$

for all $y \in B$. So by hypothesis, $y^n \in P$ for all $y \in B$ implies that $B^n \subseteq P$. Hence P is quasi-left primary ideal in S.

Lemma 3.4. If S is a Γ-AG-groupoid with left identity, then a left Γ-ideal P of S is quasi-left primary if and only if $(S\gamma a)\delta(S\beta b) \subseteq P$ implies that $a^n \in P$ or $b^n \in P$ for some positive integer n, where $\gamma, \beta, \delta \in \Gamma$ and $a, b \in S$.

Proof. Let P be a quasi-left primary ideal of a Γ-AG-groupoid S with left identity. Now suppose that $(S\gamma a)\delta(S\beta b) \subseteq P$. Then by Definition of left ideal, we get

$$(S\gamma a)\delta(S\beta b) = (S\gamma S)\delta(a\beta b)$$
that is \(a\delta(S\beta b) = (S\gamma a)\delta(S\beta b) \subseteq P \). By Lemma 3.3, we have \(a^n \in P \) or \(b^n \in P \) for some positive integer \(n \).

Conversely, assume that if \((S\gamma a)\delta(S\beta b) \subseteq P \), then \(a^n \in P \) or \(b^n \in P \) for some positive integer \(n \), where \(\gamma, \beta, \delta \in \Gamma \) and \(a, b \in S \). Let \(a\delta(S\beta b) \subseteq P \). Now consider

\[
a\delta(S\beta b) = (S\gamma a)\delta(S\beta b) \subseteq P.
\]

By using given assumption, if \(a\delta(S\beta b) \subseteq P \), then \(a^n \in P \) or \(b^n \in P \) for some positive integer \(n \). Then by Lemma 3.3, we have \(P \) is a quasi-left primary ideal in \(S \).

Theorem 3.5. If \(S \) is a \(\Gamma \)-AG-groupoid with left identity, then a left \(\Gamma \)-ideal \(P \) of \(S \) is quasi-left primary if and only if \(a\gamma b \in P \) implies that \(a^n \in P \) or \(b^n \in P \) for some positive integer \(n \), where \(\gamma \in \Gamma \) and \(a, b \in S \).

Proof. Let \(P \) be a left \(\Gamma \)-ideal of a \(\Gamma \)-AG-groupoid \(S \) with left identity. Now suppose that \(a\gamma b \in P \). Then by Definition of left ideal, we get

\[
(S\alpha a)\beta(S\gamma b) = (S\alpha S)\beta(a\gamma b)
\]

\[
= S\beta(a\gamma b)
\]

\[
\subseteq SP
\]

\[
\subseteq P.
\]

By Lemma 3.4, we have \(a^n \in P \) or \(b^n \in P \) for some positive integer \(n \). Conversely, the proof is easy.

Theorem 3.6. Let \(S \) be a \(\Gamma \)-AG-groupoid, and let \(A \) be a quasi-left primary ideal of \(S \). Then \((A : \gamma : r) \) is a quasi-left primary ideal in \(S \), where \(\gamma \in \Gamma \) and \(r \in S \).

Proof. Assume that \(A \) is a quasi-left primary ideal of \(S \). By Lemma 2.12, we have \((A : \gamma : r) \) is a left ideal in \(S \). Let \(a\beta b \in (A : \gamma : r) \). Suppose that \(b^n \notin (A : \gamma : r) \), for all positive integer \(n \). Since \(a\beta b \in (A : \gamma : r) \), we have \(r(\gamma(a\beta b)) \in A \) so that \(a\gamma(r\beta b) \in A \). By Theorem 3.5, we have \(a^n \in A \subseteq (A : \gamma : r) \) or \((r\beta b)^n \in A \), for some positive integer \(n \). Therefore \(a^n \in (A : \gamma : r) \) and hence \((A : \gamma : r) \) is a quasi-left primary ideal in \(S \).
Theorem 3.7. Let S be a Γ-AG-groupoid with left identity e and let P be a quasi-primary ideal of S. If $(S\gamma a^2)\alpha(S\beta b^2) \subseteq P$, then $a^n \in P$ or $b^n \in P$, for some positive integer n, where $\gamma \in \Gamma$ and $a, b \in S$.

Proof. Let P be a quasi-primary ideal of a Γ-AG-groupoid S with left identity. Suppose that $b^n \notin P$, for all positive integer n. Now assume that $(S\gamma a^2)\alpha(S\beta b^2) \subseteq P$. Then by Definition of left Γ-ideal, we get

$$(S\gamma a^2)\alpha(S\beta b^2) = ((S\beta b^2)\gamma a^2)\alpha S$$

$$= ((a^2\beta b^2)\gamma S)\alpha S$$

$$= (S\gamma S)\alpha(a^2\beta b^2)$$

$$= a^2\alpha((S\gamma S)\beta b^2)$$

$$= a^2\alpha((b^2\gamma S)\beta S)$$

$$= (b^2\gamma S)\alpha(a^2\beta S)$$

that is $(b^2\gamma S)\alpha(a^2\beta S) \subseteq P$. By Lemma 2.11, we have $a^2\beta S$ and $b^2\gamma S$ are Γ-ideals in S so that

$$a^2 = a\lambda a$$

$$= (e\chi a)\lambda a$$

$$= (a\lambda a)\lambda e$$

$$= (a\lambda a)\beta e$$

$$= a^2\beta e \in a^2\beta S \subseteq P$$

or

$$b^2 = b\lambda b$$

$$= (e\chi b)\lambda b$$

$$= (b\lambda b)\lambda e$$

$$= (b\lambda b)\gamma e$$

$$= b^2\gamma e \in b^2\gamma S \subseteq P$$

for all $\chi \in \Gamma$. Therefore $a^n \in P$, for some positive integer n.

Corollary 3.8. Let S be a Γ-AG-groupoid with left identity, and let P be a quasi-primary ideal of S. If $b^2\gamma a^2 \in P$, then $a^n \in P$ or $b^n \in P$, for some positive integer n.

Proof. Let P be a quasi-primary ideal of an AG-groupoid S with left identity. Suppose that $b^n \notin P$, for all positive integer n. Now assume that $b^2\gamma a^2 \in P$. Then by Definition of left Γ-ideal, we get
\[(a^2 \beta S) \alpha (b^2 \gamma S) = b^2 \alpha ((a^2 \beta S) \gamma S) \]
\[= b^2 \alpha ((S \beta S) \gamma a^2) \]
\[= (S \beta S) \alpha (b^2 \gamma a^2) \]
\[= S \alpha (b^2 \gamma a^2) \]
\[\subseteq STP \]
\[\subseteq P \]

that is \((a^2 \beta S) \alpha (b^2 \gamma S) \subseteq P\). It is easy to see that \(a^n \in P\), for some positive integer \(n\).

Definition 3.9. A \(\Gamma\)-AG-groupoid \(S\) is called \(\Gamma\)-AG-3-band if its every element satisfies
\[a \alpha (a \beta a) = (a \alpha a) \beta a = a. \]

Proposition 3.10. [13] Every left identity in a \(\Gamma\)-AG-3-band is a right identity.

Lemma 3.11. [13] If a \(\Gamma\)-AG-3-band \(S\) has a left identity, then every left \(\Gamma\)-ideal is a \(\Gamma\)-ideal.

Theorem 3.12. Let \(S\) be a \(\Gamma\)-AG-3-band with left identity. Then \(P\) is a quasi-left primary ideal in \(S\) if and only if \(S\) is a quasi-primary ideal in \(S\).

Proof. The proof is straightforward. \(\square\)

ACKNOWLEDGEMENT

The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

REFERENCES

