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_________________________________________________________________________________ 

ABSTRACT— Non-magnetic convection of an ideal compressible gas is considered in two dimensions to benchmark 

the code for the problems addressed which involve a rescaling of the thermodynamics from the problems originally 

addressed using the Pencil-code. 
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1. INTRODUCTION 

We study the 2D non-magnetic convection of a plane-parallel layer of a compressible fluid (an ideal gas) heated from 

below, following Gough [2] and Spiegel [3]. Spiegel [3] presented linear equations for the onset of convection in a plane 

parallel layer of perfect gas. He also gave the appropriate definition of the Rayleigh number. Gough [2] applied the 

results of Spiegel [3] in calculating critical Rayleigh numbers and wavenumbers for different values of the layer depth 

and polytropic index of static atmosphere. 

 

2. THEORY AND RELATED WORKS 

A plane-parallel layer of compressible fluid with boundary conditions imposed at the top, 2z = −0.1 and bottom,   

1z = −1.1. At the lower and upper boundary, temperature perturbations are fixed to be zero and free-slip velocity 

boundary conditions are used; however, the horizontal boundary condition is periodic. We adopt Cartesian coordinates 

),( zx  where x  denotes the horizontal direction and z  is height, and gravity, g , is in the direction of negative z . Our 

system is composed of a convection zone of depth, 12 zzd  , embedded between two stable layers. Our study requires 

the implementation of more general scaling within the Pencil-Code (e.g. general choices of specific heat, pc ), compared 

to the scaling normally assumed ( pc = 1, Gough [2]).  

The hydrostatic, thermal equilibrium solutions satisfying gp  /  and 02  T , for the plane layer considered 

here which are the pressure, density and temperature profiles 
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The initial vertical stratification is computed using polytropes of various indexes for  

mp /11   or 
mT .     (3) 

 

3. COMPUTATIONAL DETAILS 

In the Pencil-Code, the conservation of mass equation is implemented using the log density as 
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We assume that all variables are periodic in the horizontal direction and adopt the following conditions at the upper 

and lower boundaries: 
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The initial profile is specified as 

)(0  zzT  ,      (6) 

))(( zgzz         (7) 

where   is a gravitational potential such that g . 

 

The definition of the Rayleigh number considered by Gough [2] and Spiegel [3] is 
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where K  is the thermal conductivity,  is the shear viscosity, and   is the super adiabatic temperature gradient, 

pcg /0   . And the Prandtl number is a dimensionless number approximating the ratio of kinematic viscosity and 

thermal diffusivity. It is defined as 
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The relations between various thermodynamic and hydrodynamic parameters considered for the cases pc  = 2.5 and 

pc  = 1.0 are required. The general relations for an ideal gas are given by 
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where e is the internal energy per unit mass of fluid, s  is the specific entropy,  vp ccs /  and vp ccR *
, where 

vc  is the specific heat at constant volume given by Choudhuri [1]. This adiabatic sound speed, sc , is obtained from 

perturbation arguments. 

 

4. RESULTS AND DISCUSSION 

Figure 1 shows the evolution of the root mean square (rms) of the vertical velocity (urms) and maximum velocity 

(umax) for pc  = 1.0 and 2.5 over time. The velocity can clearly be seen in images of both urms and umax; the velocity 

increases sharply until t = 3000s and then slowly saturates. The time scale with pc  = 2.5 is faster than pc  = 1.0 by a 

factor of 20 = 4.47214. For pc  = 2.5, when the Rayleigh number, aR , was increased by a factor of 1.25, the velocities 

grow dramatically until t ≃ 400s and reaches a stable state. 
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Figure 1: Plot of the root mean square of the vertical velocity (top) and the maximum velocity (bottom)  

with time, for pc  = 1.0 and pc  = 2.5. 

 

Figure 2 shows vertical profiles of log density (top left), the velocity in the z-direction (top right), entropy (bottom 

left) and temperature (bottom right) for pc  = 1.0 and 2.5. The dashed lines represent their initial profiles. The horizontal 

lines are the bottom boundary at  z  = −1.1 and top boundary at z  = −0.1.  

     
Figure2: Vertical profiles of log density (top left), vertical velocity (top right), entropy (bottom left) and temperature 

(bottom right) over z, for pc  = 1.0 and pc  = 2.5. 

 

Figure 3 shows a snapshot of entropy and velocity vectors for 2D convection compared between pc  = 1.0 (t = 

6000s) and pc  = 2.5 (t = 1400s) for Rayleigh number, aR  = 1189 and wave number,  ca  = 2.42 (given by Gough [2]) 

with dark colors representing low entropy.   

 

  
Figure3: A snapshot of velocity and entropy at time t = 6000s and t = 1400s, 

for comparable runs with pc  = 1 and pc  = 2.5 
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Table 1: Comparison of numerical values of different terms evaluated in the Pencil-Code 

for the two scaling considered: pc  = 2.5 and pc  = 1.0 

variable value ( pc  = 2.5) value ( pc  = 1.0) ratio ( pc  = 2.5 / pc  = 1.0) 

dt

du
 (constant gravity) 

-20.0 

 
-1.0 

20 
uu   2.8721E-5 1.4361E-6 

 scc ps  /1ln2   -20.0 -1.0 

2
sc  10.3333 0.5167 

s  -0.80645 -0.3226 

5/2 su   5.1733E-4 4.627E-5 

s  0.9123 0.3649 

T  6.2 0.775 8 [ = 20/(5/2) ] 

ln  -1.6129 -1.6129 

1 
  6.2 6.2 

aR  1189 1189 

rP  1 1 

 

5. CONCLUSION 

As can be seen in Table 1 the Rayleigh number at criticality at the middle of the layer for pc  = 2.5 and pc  = 

1.0, 1189, is as given in Gough [2]. Therefore, the implementation of the general thermodynamics for convection 

problems has been satisfied and tested. The results of Gough [2] have been reproduced, and we are in a position 

to extend our calculations to consider 3D geodynamo problems.  
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