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ABSTRACT— In this paper, we study, using tensors and a rigorous mathematical formulation, elastic strains in 

Cartesian coordinates. We also generalize this study to curvilinear coordinates. We then apply the results obtained in 

thermodynamics and we study an example. 
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1. INTRODUCTION 

The problem of elasticity is one of the first to be met in the history of physical theories, and the scholars who have 

devoted themselves to this study for more than a century are numerous. The modern theories have thrown new light and 

allow the solution of a certain number of serious difficulties or old paradoxes. Despite all these works, there remain still 

enough serious uncertainties on the exact nature of the laws of interaction of the particles, the collection of which 

constitute a solid body. Arguments based on the fiction of a continuous and homogeneous solid retain then a real value. 

We know they can be applied correctly only if the deformations of the solid are very slowly variable from one point to 

another, but with this approximation, these methods still make their contribution. The continuous theory of solids will be 

correct so long as the deformations can be considered uniform in domains of some tens of angstroms. Under these 

conditions, the properties of the solid differ only a very little from what one observes on a large scale, and we can 

abstract from the details of internal structure. 

The objective of the present work is to study, using tensors and rigorous mathematical formulations, strains in 

Cartesian coordinates, and to generalize the results obtained to curvilinear coordinates. We also show how we can apply 

those results in thermodynamics using the important notion of potential energy density for a strained solid. 

The paper organizes as follows:   

In section 2, we study deformations in Cartesian coordinates.  

In section 3, we give the general definition of strains. 

In section 4, we study the invariants of the strain.  

 

2.  DEFORMATIONS IN CARTESIAN COORDINATES 

 

Latin indexes  range from  to . We adopt the Einstein summation convention:  

 
    Let us take orthogonal rectilinear axes   and consider in the undeformed solid two neighboring points  and 

P’ with coordinates   . The square of the distance between them is given by: 

 
The fundamental metric tensor     is reduced to the table: 
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and we can, in these circumstances, cease to distinguish covariant and contravariant components of a tensor. 

Suppose now that each of the points of the body is subjected to a displacement u, varying from one point to another. The 

point P comes to a point Q with coordinates Xi  such that :  

           

    The displacement  will not be treated as infinitely small. It can have any magnitude at all. These displacements have 

as their result a certain motion of the whole body and a deformation.  
A deformation is the transformation of a body from a reference configuration to a current configuration. A configuration 

is a set containing the positions of all particles of the body. 

We want to isolate the deformation terms. Mathematically, the body is deformed if the distance between two neighboring 

points is changed. The square of the distance PP' was    before the deformation. The square     of the distance 

QQ’ between two displaced points is: 

    
We will suppose that the displacements    are continuous differentiable functions of the original coordinates   . We 

can then set: 

               

Hence: 

                                     
      In this equation, in conformity with our usual procedure, we suppose the summations are made independently over all 

the indices  and  . A term appears twice, with   This result may be 

rewritten as follows:  

                      
     The substitution of the   in (6)  gives back (5)  except for a change of notation, dummy index  being replaced in the 

first group of terms. 

     When the displacements u  are given, the collection of quantities   forms a tensor with two indices, attached to the 

point Q of the strained body and referred to the Cartesian coordinate   of this point. This tensor  defines 

mathematically the strain. 

     A strain is a normalized measure of deformation representing the displacement between particles in the body relative 

to a reference length. 

We distinguish: 

             
       This tensor is obviously symmetric so that in reality it has six independent components. 

    If we want to obtain a general result, we have to keep these expressions in their totality with the second-degree terms. 

So, the equations are rigorous. If one were interested only in small strains, the partial derivatives   could be supposed 

infinitesimals of the first order, and one would arrive at the elementary formulas: 

 
Voigt's notation is often used for the six components of the strain. It has the inconvenience of bringing in a factor 2 which 

makes components differ from the components of the tensor: 
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    Up to now we have considered the coordinates   of a point of the strained body referred to invariable orthogonal 

axes. We can try to proceed in another way and identify a point of the strained body by means of coordinates   which 

define the initial position of the point before the strain. This comes to the same thing as choosing new coordinate surfaces 

   in the strained body which will be curvilinear. These surfaces are derived from the original rectangular coordinate 

planes by supposing them to be carried along by the body in its motion and deformed with it. In these deformed 

curvilinear coordinates, the coordinates of a point keep numerically the same values: 

                                                
The coordinate transformation for the strained body would be made according to the following equations which allow us 

to pass from the rigid axes   to the deformed axes : 

                            
with coefficients : 

 
In these curvilinear axes carried along by the body in the course of its deformation, the square of the distance between 

two neighboring points is: 

                       
with  

 
The result comes directly from application of equations (6). 

    We will find the geometrical significance of the deformation coefficients from this expression. If at a point in space we 

have units of length    along the different axes and angles    between these axes which are not in general orthogonal, 

we find:  

                          
We apply these results to the curvilinear coordinates   whose metric tensor is : 

 
Before the deformation we were in an orthogonal Cartesian system with a common unit of length for the three axes: 

 
After the deformation we have, then, variations of length of the segments which were originally equal to  and directed 

along the axes: 

                                 
and the angles   are no longer right angles. Let us limit ourselves to the case of a very small strain. The equations 

reduced to (8) will be sufficient, and we will have: 

                           
The extension along the 1- axis will then be given by ,   and it is just in this way that this quantity is usually defined for 

very small strains. 
For the cosines of  the angles we find: 

 
This agrees with the elementary definition of the shears: 

 

                    
     According to the problem we are treating, we will sometimes be interested in supposing the strained body is referred 

to rigid orthogonal axes    and sometimes to the curvilinear coordinates   

embedded in the body. The transformation equations (11) allow us to write immediately the transition from the first to 

the second system of components for an arbitrary tensor. For example, according to whether we have contravariant or 

covariant tensors: 
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Let us point out an important conclusion: we cannot have in a solid a completely arbitrary combination of strains. If we 

take the case of the small strains (8), we find the relations: 

 
and two others of the type. These equations are useful to recall, for they set up connections between the possible 

combinations of strains. 

 

3. THE GENERAL DEFINITION OF STRAINS 

     The discussion we have just written in Cartesian coordinates may be written without too much trouble for any 

coordinates. 

Let us consider in our space a solid at rest referred to coordinates  We also consider two neighboring 

points: 

 

 
 

The square of distance between them is given by the quadratic form: 

                                            
where the   stand for the fundamental metric tensor.  

We now suppose that the body is subjected to a deformation in the sense that the distance between two neighboring 

points is changed during a motion of the whole body. The points P 

  and P' of the body will occupy different positions, Q and Q'. We take the coordinates of the point Q to be and Q’ to 

be  with respect to the coordinate system k, about which we make the essential supposition that it remains 

invariant during the deformation. The square of the distance QQ'  is now : 

                                            
the notation   showing that we are dealing with values of the g taken at the point  and not . 

To define the strain at every point we must give ourselves    as functions of the  . We can then 

develop equation (21)  and write : 

         
where we set: 

                            
To avoid all confusion, we must recall that these equations do not represent a change of coordinates but a displacement of 

the solid body with respect to a rigid coordinate system. 

From the method itself by which we have derived them, we see that the coefficients   form a twice covariant tensor 

when the law of strain is given. We obtain the strain tensor by taking the difference: 

                                             
We must now try to go into details of the general expressions (24) which define the strains. To that end, we introduce the 

displacement    of a point of the body by setting: 
 

                                 

We note immediately that     is a contravariant tensor only if the strain is infinitely small. The  do not form a tensor. 

We obtain then for these last coefficients the following values:  

 

 
In the expression for the   we must then distinguish the particular terms for which the two indices of a coefficient a 

become equal. This allows us to write: 
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The exceptional terms written in the first place come from the cases R=i and S=j.  We will develop this expression, 

keeping terms of the first and the second order. We will have from the Taylor series development: 

 
Hence we get: 

 

 
The first-order terms grouped in the first line may be rewritten without difficulty in the following form: 

 
Likewise, after some simple calculations, we can arrive at the following form: 

 

         
      The second line and all terms of higher order (which we have not written) disappear if the space is Euclidian and we 

take rectilinear axes, for all the derivatives of g and the   then vanish. Recall that the   stand for the Christoffel 

symbols of the second kind associated to our fundamental metric tensor. 

The global value of the strain given by equation (28) is rather difficult to discuss, but we can arrange things so as to 

reduce it all to the simple form (27)  of the small deformations. The point we wish to show is the following: if we take a 

body already under strain and make a new displacements   in the    system of axes, embedded in the solid and 

deformed by the whole preceding strain, then the variations of the strain tensor are given by a simple equation of  type 

(27): 

 

                            
     We consider a body which has undergone a first deformation. The neighboring points with original coordinates and 

now occupy new positions  and . 

  After this strain, the square of their separation has the value: 

                                    
 

 

according to formula (21). 

  Suppose we make a very small variation of the deformation: the coordinates  

  are increased by   Those of the point  become  The   then undergoes 

a variation : 

                       
or by changing the names of dummy indices of the last two terms 
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But we can also express the   by means of the    by using equation (22). During a variation of the strain the 

 remain unchanged and we obtain: 

           
If we compare the expressions (32) and (31), we draw from them immediately: 

             

The coefficients   are, as before, the derivatives  . This equation will be very useful in what follows. We will see 

how it can be interpreted. Up to now we have always dealt with the coordinates  of the strained body referred to 

invariable k axes. We can proceed in another way and define a point of the strained body by the three numbers 

   which gave its position in the initial state. Thus we choose in the strained body new coordinate surfaces 

forming a system of axes , and in reference to these, the coordinate of a point is numerically equal to    This 

system of   axes is that which is derived from the initial axes k  by supposing them embedded in the body and 

deformed with it. For these axes we will have then: 

                               
The coordinate transformation is then made according to the formulas: 

                                       
and a tensor   transforms by the rule: 

                                                
If we compare equations (34) and (37), we arrive at the relation (29)  which we have stated. 

These equations represent the generalization for curvilinear coordinates of the expressions we have given in Cartesian 

coordinates. 

 

4. ISOTROPIC BODY AND INVARIANTS OF THE STRAIN 

 
     When we consider a body that is initially homogeneous and isotropic, it is of interest to see what invariant 

combinations, with respect to coordinate transformations we can form with the components of the strain tensor. These 

invariants alone ought to enter the expression for the potential energy, for example. The tensor notations show us 

immediately that the following combinations are invariant. They are written with the help of mixed components: 

 

 
 

We will have: 

 

 
etc. 

As another invariant of the second degree we will have also   and of the third degree we find  etc. 

Let us now write the complete expressions for  and ,  for these will prove to be very useful: 

 
In these expressions we have assumed orthogonal Cartesian axes so that the covariant, contravariant, and mixed 

components are all equal among themselves. The expressions are obtained by taking into account that a coefficient    

for example, comes in several times in the sum (38),  since  are equal. 
None of these invariants gives the variation of the volume. This is obtained most easily from the functional determinant: 
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In the first approximation this determinant is equal to: 

                          
But we must not be content with this result since we are trying throughout to set up rigorous formulas. The original 

volume was: 

 
where g  stands for the determinant of the   

The final volume, in the embedded and strained axes  is written: 

 
and we have the equation: 

 
which represents a particular case of the general case concerning the transformation of the determinant g  under changes 

of axes. We have, on the other hand, according to (24): 

                                                
and this allows us to form the expression for the determinant h. 

  We make the calculation only for orthogonal Cartesian axes where equations simplify as follows: 

                      
We then obtain  as a function of the invariants I of the strain, and we derive from it, by taking the square root, an 

approximate development: 

                                  
The expression (43) is exact, but (44) represents only a first approximation. We see we must not confuse the invariant  

with twice the cubical dilation  
  The relative variation of the volume is: 

                             
 

5. POTENTIAL ENERGY DENSITY FOR A STRAINED SOLID 

 
       The principles of thermodynamics allow the definition of the energy of a given body as a function of the mechanical 

variables (strains) and the temperature. For, if we call    the work of the external forces, , the heat 

supplied,  the variation of the total kinetic energy of the body during an infinitely small transformation, we have: 

 
where  is the internal energy of the body under consideration. 

The kinetic energy  is that which corresponds to the motion of the solid body as a whole; the energy of thermal 

agitation is calculated in . 

On the other hand, the second law gives us for a reversible transformation: 
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  being the entropy of the body being studied. We derive hence the following relations: 

                                   
 

                   
We will see that we can eliminate the temperature variable in the two following cases : 

 

1. Adiabatic transformations.  

 

      The body is supposed to be thermally insulated so that it cannot exchange energy with the exterior. This case is 

realized practically in the study of rapid vibratory motions such that heat flow does not have time to equalize 

temperatures. We use the relation (46)  with  

  We see then that the function  plays the role of a potential energy for the solid body. By dividing the body into small 

volume elements we can define an energy density E  which will satisfy the condition: 

                                              
The coordinates used here are, of course, the coordinates embedded in the body in its motion so that the limits of 

equation (47) are fixed and do not depend on the strains. The symbol  represents the energy of the strained system 

referred to an initial unit volume   
 

2. Isothermal transformation 

 

     The body is supposed to be contained in a constant temperature bath. The motions must be slow enough that the heat 

exchanges between the body and the thermostat always have time to take place to keep the temperature uniform. We use 

then the relation (47) 

  with  and see that the function  (thermodynamic potential) plays the role of a potential energy. We 

define an energy density   by the condition:  

                                        
in the embedded coordinates. 

We see that in either of these two cases, we can define a density . Since these two quantities play exactly the 

same role for the following calculations, we will not distinguish them any more, and we will speak of an energy density 

. To obtain the laws of elasticity, there remains one more step to take by specifying the way the energy density is 

expressed in terms of the strains. We can proceed at this point only by approximations and form a series development 

holding for small deformations starting from a given state. The choice of the initial state is the natural state of the solid 

body when it is subjected to no external force. 

   The restriction is not a happy one, for it limits many applications of the formulas that are thus established. We prefer to 

suppose that the initial state is quite arbitrary, either natural or strained. We must distinguish two categories of external 

forces : 

I. Steady external forces, which give the initial strain of the body and which are supposed to act in a permanent way on 

the body. 

II. Accidental external forces, which can introduce increments in the strain starting from the initial state of the body ( 

strained by the steady forces of the first group). 

We will make a development with respect to the strains for the internal elastic energy density of the body, measured from 

the initial state we have just defined. This development will be made up of terms    homogeneous of 

degrees   in the strains. For the moment we limit ourselves to second-degree terms: 

 
The linear terms   grouped in the sum  will exist only if in the initial state the body is already subjected to 

external forces, that is, if the steady external forces of group I do not vanish. For, when these external forces I vanish,  the 

energy density  ought to start with second-degree terms. Every departure, positive or negative (   0 or < 0), from 

the initial state ought to be accompanied by an increase of the internal potential energy in order that the initial state be 

stable. 
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     The coefficients  form by their very definition a tensor density, since multiplied by the elements   (tensor), they 

must give a scalar density  

  Since the   are symmetric in   we can take the  also to be symmetric. This does not limit their generality at all 

since the antisymmetric part would play no role. 

Likewise, the coefficients  form a tensor density, symmetric in   and for the interchange of the two 

groups of  indices: 

                                                       
The external forces of group I can be supposed to be derived from a particular potential energy, the energy of the 

mechanical system inducing the permanent strain. We refer this energy to the original volume of the solid and obtain an 

energy density H which, as the preceding, has a series development in terms of the strains of the body: 

 
     Let us look an example: suppose the body is immersed in a liquid medium which exerts on it a uniform hydrostatic 

pressure p. Let us assume that this pressure is constant, whatever may be the additional strains imposed on the body by 

the accidental forces of group II. This case will be realized if the body is immersed in a large volume of liquid at a 

pressure p.The total energy coming from this pressure will be pV, where V  is the total volume of the solid. We can write 

an energy density H of the form: 

                              
  is the volume occupied after the additional strain by a portion of the body whose initial volume was ( under the 

influence of the pressure p, the only representative of the type I forces ). 
Making use of the development (45), we express  as a function of the invariants of the additional strains: 

                                                                                
We must now say something about the stability of the initial state. If we impose a small additional strain  of arbitrary 

sign, the sum  of the energies of the body and the external forces of group I must increase. This sum must contain 

only second-degree terms. The first-degree terms of    and  must cancel each other exactly: 

                                  
Let us take up again the example of the solid under a constant hydrostatic pressure p. The above condition gives us, in 

rectangular Cartesian coordinates: 

                                  
since using (54), the terms of the first degree   of the external forces are: 

                                    
The pressure p is balanced, as far as the first-degree terms are concerned, by the reaction of the solid. But it still has a 

role in the second-degree terms, since the sum of these terms is: 

                  
When we measure the forces necessary to induce further strains in the body, we obtain not only the coefficients  

increased or diminished by kp  (k, numerical coefficient ), in short, the sum  and not  alone. 

If the body is subjected to a pressure which depends on its volume, the second-degree terms  will not have the simple 

form (58), and the measurements will be very difficult to interpret. 

 

6. CONCLUSION 

     In the most general case, we will have six distinct coefficients  to define the initial stresses. Their number is that of 

the components of a second rank symmetric tensor. We must here make an important remark which justifies the manner 
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of definition we choose for the strains. We insisted on the importance of keeping all the necessary terms of higher order 

than the first in the development of the strain tensor ( equation (7) and (28) ). It is easy to see that if we develop the 

energy density up to terms of the  degree in the strains (  in equation (55) ), it will be necessary, in the terms 

linear in the strains, to write the development of the strains up to the terms of the   degree in the displacements   or 

their derivatives. In particular, if we do not wish to neglect terms of the same order as those kept somewhere else, it is 

indispensible in equation (55)  to keep the expressions of the strains up to terms of the second degree in  and   
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