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ABSTRACT — In this paper, the formal properties of  a peculiar BL-algebra whose elements are particular type-2 fuzzy sets 

are investigated. These type-2 fuzzy sets have membership degrees that are triangular fuzzy number totally ordered on [0, 1]. 

This algebra, endowed with suitable functions for data modelling, allows to handle  a  wide range of applications. 
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1.  INTRODUCTION  

BL-algebras have been introduced by Hajek [12] as those algebras which are appropriate for modelling formulas of 

Basic Logic. Specifically, they are the Lindenbaum algebras of the theories of Basic Logic. The latter aims at formalizing 

in a quite general way statements of fuzzy nature. BL-algebras may be understood as being residuated lattices fulfilling 

some further natural requirements. Moreover, BL-algebras form a variety of residuated lattices and they have been 

investigated in several papers, e.g. [1 ,4, 14, 19, 21]. In particular, by means of Basic Logic and BL-algebras, it is 

possible to build in a simple and elegant way a general theory of fuzzy logic in narrow sense. 

Type-2 fuzzy sets, introduced by Zadeh [15] in 1975, have membership degrees that are themselves fuzzy sets. So a 

type-1 fuzzy set is a special case of a type-2 fuzzy set. Their properties and their applications have been studied in many 

papers, e.g. [2, 3, 13, 15, 16, 18]. 

In this paper a BL-algebra is introduced whose support set is the set of type-2 fuzzy sets having totally ordered triangular 

numbers on [0, 1] as membership degrees.  

In [6, 10]  the monoidal residuation properties are investigated, in this paper  these results are extended by introducing 

lattice operations and BL-algebras properties.   

The paper is organized as follows. In section 2 the mathematical concepts are given the following sections rely on, in 

section 3 the commutative monoid is introduced and a suitable order relation is studied in the next section. By means of 

this relation in section 5 the monoid is endowed with a residuation operation. In section 6 a BL-algebra (BL-chain) is 

defined. In section 7 the existence of a BL-algebra on the ordinal sum of BL-chains is proved. Finally, in section 8 the  

wide range of applications investigated so far are summarized and section 9 sketches some possible further investigation 

areas. 

 

2.  MAIN DEFINITIONS 

A commutative partially ordered monoid [11] is a structure (L, *, e, ) such that (L, *, e) is a commutative monoid, 

where the element e is the unit,  is a partial order on L and for all a, b, c, d  L, if a  b and cd then a*c  b*d.  

 

An algebra (L, , ) is a lattice if the following identities are true in L:  

Idempotency) xx = x, xx = x 

Commutativity) xy = yx, xy = yx 

Associativity) x(yz)=(xy)z, x(yz)=(xy)z 

Absorption) x(xy) = x(xy) = x. 

 

A residuated lattice [12] (L, , , *, , e, 0) is a structure such that:  

i) (L, , , *, , e, 0) is a lattice with the greatest element e and the least element 0 (with respect to the lattice 

ordering  ); 

ii) (L, *, e) is a commutative monoid with the unit element e;  
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iii) * and  form an adjoint pair, i.e., for all a, b  L, c*ab iff ca  b (Galois relation). The binary operation 

 on L is called residuum. The residuum  is antitone in the left argument, monotone in the right element and for 

any a, b  L results e  a = a. 

 

A residuated lattice (L, , , *, , e, 0) is a BL-algebra on L [12] iff the following identities hold for any x,y  L: 

i) x  y = x* (x  y); 

ii) (x  y)  (y  x) = e. 

 

In each BL-algebra the following relation also holds: 

x  y = ((x  y)  y)  ((y  x)  x)  

 

Let A be a non empty classical set. A fuzzy set s on A is a function s: A --> [0, 1]. If a  A then s(a) is said the 

membership degree of a to A.  

A triangular fuzzy number x=[a, b, c] on [0, 1] is a fuzzy set whose membership function is a triangle whose vertices 

are the points (a, 0), (b, 1) and (c, 0). In the sequel the following extended operations  are used on the class of the [0,1]-

triangular fuzzy numbers: i) *[a,b,c]=[*a, *b, *c] (product of a real number); ii) [a, b, c] + [d, e, f] = [a+d, b+e, 

c+f] (sum). 

A type-2 fuzzy set s2 [20] on A is a function s2: A --> [0, 1][0,1].  

 

 

3.  THE COMMUTATIVE MONOID 

Suppose that one has the following objects:  

i) U: a finite universe of the discourse of cardinality p;  

ii) Tr = {[0, 0, 0], [1, 1, 1]}  {[a, b, c]: {a, b, c}  [0, 1]}: a set of totally ordered triangular fuzzy numbers.    [a, b, 

c]  [d, e, f] iff ad, be, cf. It is worth noting that the crisp numbers: [0, 0, 0] and [1, 1, 1] belong to Tr;  

iii) F2
 = {a: i: m...1, with mp xi/ui}: class of the type-2 fuzzy sets U --> Tr, where xi  Tr, xi  xi+1, and {um, um-1, ...., u1} 

belongs to the class of crisp partitions P(U) on U. In the sequel the elements ui are called  crisp parts  and the 

elements xi fuzzy parts 

iv) S(U)= {[0= [0, 0, 0]/U, (1, 0, 1)], [1=[1,1,1]/U, (0, 1, 1)]}  {[a, t]: a  F2, and t=(k, s, am, am-1, ..., a1) is a suitable 

t-uple of positive integers, that satisfies the following constraints: j) if k = 1 then ai=1 for any i:1...m; jj) if k1 the t-

uple (am, am-1, ..., a1) is symmetric with respect to the central values }; jjj) s = 0 for 0, instead s=1 for any A  0 and 

1 in S(U). Moreover (k, s, am, ..., a1) = (1, s, 1, 1, ..., 1) iff the related type-2 fuzzy set is not the product of other 

sets through the operation  introduced in the sequel. 

 

One  can give the following intuitive meaning: the type-2 fuzzy set i: m...1, with mp xi/ui represents an attribute A in the 

sense that the elements ui  U satisfy A with strength xi. Moreover, one says that the elements of U are classified with 

respect to A by means of the linguistic terms represented by the type-1 fuzzy sets xi  [0,1][0,1]. With this interpretation 

the element 0 and 1 are read as “No information” and “Not compatible”, respectively. The label standing for “No 

information” is utilized when there is no information available about the elements in U in order to assess the degree they 

satisfy the attribute A with, whereas “Not compatible” is used if the elements in  U are not compatible with the property 

A. 

 

Given  

A=[i: np...1 xi/ui, (kA, sA, an, an-1, ..., a1)] and  

B=[i: mp...1 yi/vi, (kB, sB, bm, bm-1, .., b1)]  S(U),  

the binary operation  on S(U)xS(U) is defined as follows: 

A  B = [i:n+m-1...1 zi/wi, (kA+kB, 1, cn+m-1, ..., c1)] 

 
where 


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It is worth noting that A  0 = 0 and A  1 = A.  

 

The indices ah e bk represent the number of sets that have generated the i-th class of A and B, respectively. The 

indices kA e kB represent, in turn, the number of sets that have generated the classes of A and B, respectively. The 

operation for zi represents essentially a mean among the type-2 fuzzy sets, where each fuzzy set takes a weight in some 

way related to the changes induced by the composition. Essentially these indices include the computational history of the 

type-2 fuzzy sets. The operation  is well defined: i) (wn+m-1, wn+m-2 ..., w1)  P(U); ii) the t-uple (cm+n-1, ....., c1) is strictly 

increasing and symmetric with respect to the central values; iii) ABS(U); iv) the elements zi are triangular fuzzy 

numbers on [0, 1]. 

 

Proposition 1: The structure (S(U), , 1) is a commutative monoid. 

Proof. [10]  

 

Example 1: Consider the universe U={a, b, c, d, e} and the following elements in S(U): 

A = [ [0.8, 1, 1]/a +[0.5, 0.7, 0.9] / {b, e}+[0, 0, 0.2]/{c, d}, (1,1,1,1,1)] 

B = [ [0.5, 0.7, 0.9]/{d, a} + [0.2, 0.4, 0.6]/{b, c, e}, (1,1,1,1,1)] 
 

Let x1 = [0, 0, 0.2], x2 = [0.5, 0.7, 0.9], x3 = [0.8, 1, 1], y1 = [0.2, 0.4, 0.6], y2 = [0.5, 0.7, 0.9], a3=a2=a1= b3=b2=b1=1, kA=kB=1. 
 

The computation of the crisp parts for AB is carried out as follows: 
 {a} {b, e} {c, d} * 

  {a, d} {b, c, e} = 

 {b, c, 

e}{a} 

{b, c, e}{b, 

e} 

{b, c, e}{c, 

d} 

 

     

{a, 

d}{a} 

{a, d}{b, 

e} 

{a, d}{c, d}   

{a}  {b, d, e}  {c}  

w4 w3 w2 w1  

 

The computation of  the coefficients ci can be organized as follows: 

 

c1 = a1b1 = 1; c2 = a1b2+ a2b1 = 2 

c3 = a1b3 + a2b2 + a3b1 = 2, since b3 = 0 

c4 = a1b4+ a2b3+ a3b2+a4b1 = 1, since b4= a4 = 0 

kc= kA+kB = 2, sc=1  

 

The elements zi (fuzzy parts) are singled out as follows: 

 

z1 = ((sA*sB)/(kc*c1) )* (a1b1*(kAx1+ kBy1)) =  (1*1)*/(1*1)) * (1*1*(1*[0.2, 0.4, 0.8]+1*[0.2, 0.4, 0.6]) = [0.1, 0.2, 0.4] 
 

z2=((sA*sB)/(kc*c2)*((a1b2*(kAx1+ kBy2) + a2b1*(kAx2+ kBy1)) =  ((1*1)/(2*2)) * (1*1*(1*[0.0, 0.0, 0.2] + 1*[0.5, 0.7, 0.9]) + 

            +1*1*(1* [0.5,   0.7, 1.1] + 1*[0.2, 0.4, 0.6]) = [0.3, 0.45, 0.65] 
 

z3 = ((sA*sB) / (kc*c3))*( (a3b1*(kAx3+ kBy1) + a2b2*(kAx2+ kBy2)) = [0.5, 0.7, 0.85] 
 

z4 = ((sA*sB) / (kc*c4))*( (a3b2*(kAx3+ kBy2) ) =[0.65, 0.0.85, 0.95]. 
 

So we obtain C= A  B=  

 

[ [0.65, 0.85, 0.95] /a + [0.5, 0.7, 0.85] / } +  

[0.3, 0.45, 0.65]/b, d, e} + [0.1, 0.2, 0.4]/c}, (2, 1, 1, 2, 2, 1) ]. 
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4.  THE ORDER RELATION 

 

An order relation is now introduced on S(U): 

A  B iff exists CS(U) such that A=B  C. 
 

The element C is denoted by B  A. In particular one has 0  0 = 1. If neither ÁB nor BA, one writes A  B. The 

algorithm for calculating C such that A = B  C is given in [7, 8], where the following proposition is proved: 

 

Proposition 2: The solution C of the equation A=BC is C=BA iff exist BA and B(BA) = A.  

 

The properties of the binary relation are proved as follows: 

 

i) Reflexivity: AA since A=A1;  

ii) Antisymmetricity: if AB and BA then A= B  C and B =A C’ for some C and C’, then A=A  C  C’. It follows       

C  C’ = 1, since A  A = 1, for any A  S(U). Since X  S(U) such that A  X = 1 does not exist, from C  C’ = 1 

follows C = C’ = 1. Finally A = B  1 = B;  

iii) Transitivity: if AB and BC then A= B  D and B = C  E for some D and E. Then A= CED, so AC. 

 

It is immediate to verify that 1 is the top element of S(U) and 0 is the bottom. From the definition the following 

results are obtained: A A = 1, 1A = A, A 0 = 0. Moreover neither 0A nor A1 are not defined, if A1 and A0, 

respectively. 

 

The basic properties of the order relation and the operation  are as follows:  

 

P0: AB  A;  

P1: If AC = BC and C 0, then A=B;  

P2: i) If A  B then AC  BC; ii) If AC  BC and C  0, then A  B;  

P3: A  B iff A  BA;  

P4: A  B iff (BA)A= B;  

P5: If A  B  C0 then CA  CB; (isotone in the right element) 

P6: If C  A  B then BC  AC; (antitone in the left element) 

P7: A(AB) = B 

P8: If C  A then (AB)(BC) = AC 

P9: If C  B and C  AB then A (BC) = (AB)C 

 

The proofs are trivial, for example:  P9: If C  B and C  AB then there are K and HS(U) such that C=BK and 

C=ABH, so we have K=AH, BC=A((AB)C) and A(BC) = (AB)C).  

 

Thus one obtains: 

Proposition 3: (S(U), , , 1)) is a partially ordered commutative monoid. 

Proof. If AB and CD, then there are H, K  S(U) such that A=BH and C=DK. One gets: AC= BDHK  

BD, by P0.  

 

Example 2: Let U = {a, b, c, d, e, f, g, h, e} be a universe of discourse and be the following type-2 fuzzy sets in 

S(U): 

A = [ [0.8 1 1]/{a, b} + [0.5 0.7 0.9]/{c, d, e} [0.2 0.4 0.6]/{f, g}+ [0.0 0.0 0.2]/{h}, (1, 1, 1, 1, 1, 1)]; 

C = [ [0.8 1 1]/{b} + [0.5 0.8 0.9]/{a} [0.4 0.6 0.7]/{c} + [0.2 0.4 0.6]/{e}+ [0.1 0.2 0.4]/{d, f, g}[0.0 0.0 0.4]/{h},  

      (2, 1, 1, 2, 3, 3, 2,1) ] 

In [8] the solution X of the AX = C in S(U) is found. One gets: 

X = [[0.8, 1.0, 1.0]/{f,g,h,e} + [0.2, 0.4, 0.6]/{a,c,d} +  

[0.0, 0.0, 0.2]/{b}, (1, 1, 1,1,1) ]. 

It is easy to verify that AX = C. One can adfirm X = AC and A (AC) = C, hence CA. 

5.  THE RESIDUATED MONOID 

Now  the operation AB is extended so that the new operation is the residuum of the operation  in the monoid S(U). 

Definition: 



 

Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 01– Issue 01, June 2013 

 

Asian Online Journals (www.ajouronline.com)      16 

 

 



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




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B  A   if                B 

B  A   if                 1 

A B   if         BA 

BA
 

 

Proposition 4:  

i) If BC then A  B  A  C;  

ii) If BC then C  A  B  A,  

iii) B  A  AB,  

iv) A(A  B)  B. 

Proof.  

(i) Let us consider three cases. Case 1a: BCA. We have A  B = A  B  A  C = A  C, by property P5. 

Case 1b: BAC. One gets: A  B = A  B  1 = A  C. Case 2: ABC. One has: A  B = 1 = B  C. Case 3: A | | 

B. In such case it is A | | C. We have AB=BC=AC.  

(ii) The proof is done by enumerating three cases. Case 1a: BCA. One has: C  A = 1 = B  A. Case 1b: 

BAC. One gets: C  A = C  A  1 = B  A. Case 2: ABC. One gets: C  A = C  A  B  A, by properties P6. 

Case 3:        A | | B. In such case it is A | | C. One has: C  A = A = B  A. 

(iii) From AB  A we derive A  AB = A(AB) = B by property P7. 

(iv) If AB then A(A  B) = A1= A; if BA then A(A  B)=A(AB)=B by definition; if A | | B then              

A(A  B) = AB B by property P0. 

 

The pair (, ) satisfies the Galois relation, as is shown in the following:  

 

Proposition 5: CA  B iff C  A  B. 

Proof. () Case 1: BA. We have CA  C  A  AC  A  B, from the previous proposition 5(iii). Case 2: 

AB. One gets: CAB=1=AB. Case 3: A | | B. One has: CAB=AB. () C  AB then CAA(A  B) (=A, 

if A  B); (=A(AB) = B, if BA); (=ABB, if A | | B). 

 

Hence: 

Proposition 6: (S(U), , , 1) is a residuated monoid.  

 

 

6.  A TOTALLY ORDERED BL-ALGEBRA 

Let us consider the following example. Let U be a set of individuals who are to be evaluated with respect to heart 

failure risk and cholesterol levels by means of suitable type-2 fuzzy sets A and B, respectively. It is known that the 

metabolic syndrome increases the risk of heart disease. Using this algebra, one says  that there is another type-2 fuzzy set 

C such that A = BC, where C denotes the other factors responsible for heart disease. This implies that AB, namely A 

and B are ordered, belonging to the same chain in S(U). In many applications one has that the properties {P1, P2, ...., Pn} 

of the elements of the universe of discourse are related among them and this relation is treated in this algebra so that the 

set of properties is a linearly ordered set. In the present section the algebraic properties of the chains of S(U) are studied. 

 

Let SC(U) a chain of S(U). By SC(U) one understands a subset of totally ordered elements of S(U) under the previous 

ordering relation, containing 0 and 1.  

Any chain SC(U) is a lattice by the usual operations:  

A  B = min(A, B), A  B = max(A, B). 

Moreover one defines: 










BAif

ABifBA
BA C

                    1  

              
 

 

So it is easily proved: 

Proposition 7: In any Sc(U): i) A  C  B iff C  A c B; ii) A C B = CSC(U) {C: A  C B } 

 

The two sentences are equivalent, as it is well known. They both claim that the couple (, c) is an adjoint pair, thus 

the first main result is the following: 
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Proposition 8: Any chain (SC(U), ,  , , C, 1, 0) is a totally ordered BL-algebra. 

Proof. It is enough to verify that (A C B)  (B  C A) = 1, and this is easily proved.  

 

It is worth recalling this important result [17; lemma 2, p.870]: For a totally ordered BL-algebra BL the following are 

equivalent: 

 

1. BL is sum irriducible; 

2. A  B = B iff either A=1 or B=1; 

3. BL is a Wajsberg algebra. 

 

In [17] the reader will find the definitions of Wajsberg algebra and sum irreducible of a BL-algebra. Moreover these 

results hold true: 

i) a Wajsberg algebra is a bounded Wajsberg hoop; 

ii) a Wajsberg hoop is a hoop satisfying the equation (A  B) B = (B  A)  A; 

iii) a hoop is an algebra (S, , *, e) such that (S, *, e) is a commutative monoid and for any A, B, C  S: 

 

1. A  A = 1; 

2. A*(A  B) = B*(A  B); 

3. A (A  C) = A*B  C. 

 

Finally, BL-algebras are particular bounded hoops [1, 17]. Hence the algebra (SC(U), , C, 1) is a bounded hoop. 

 

7.  ORDINAL SUMS OF TYPE-2 FUZZY SETS BL-ALGEBRAS 

It is now shown how to compose different BL-chain to get new BL-algebras, in particular BL-chains. The second main 

result is the following:  

 

Proposition 9: Let I a totally ordered set with minimum i0. Let (SCi(U), i, i , i, Ci, 1, 0), be a family a BL-chains. 

Then 

BLC = ( iISCi(U), e, e, e, e, 1, 0 ) 

where: 

 

BLC1.1: 












ji ,C B ,C    Aif                       A

)U(S B     A,if         B) min(A,  
ABBA

ji

Ci
ee  

 

BLC1.2: 












i j ,C B ,C     Aif                      B  

(U)S  B    A,if         )B,Amax(  
ABBA

ji

Ci
ee  

 

BLC2: 












i j ,C B ,C     Aif              A  

(U)S  B    A,if         B  A
ABBA

ji

Ci
ee  

 

BLC3: 


















ij (U),S B  (U),S A   if                B 

ji (U),S B  (U),S A   if                 1 

(U)S  B    A,if    BA 

BA

CjCi

CjCi

CiiC

 

 

is a BL-chain.  

Proof: The operations BLC1.1 and BLC1.2 induce lattice properties to BLC. If A and B belong to same chain, the 

operation reduces to min and max operations, previously discussed. The remaining cases are treated as min and max 
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between indices in I. So the lattice properties i)...iv), given in section II, can be easily proved by straightforward 

computation, with                      * = e,  = e,  = e.  

 

The total order e  is defined in the usual way:  

AeB iff AeB = A 

 

The operation BLC2 e, extends the monoidal properties of S(U) to iISCi(U). To verify that the algebraic features 

are preserved is straightforward. If e reduces to  the proof is similar to the previous one. In the other cases it is enough 

to consider that, with ASCi(U), B SCi(U), if i<j we have CeA= CeAeA=BeA; if j<i we have 

CeA=CeAB=BeA. The property P2 is used. 

 

This fundamental relation holds true: 

If C e B then CeAeBeA 

 

The implication BLC3 is the residuum of e, as shows the following: 

 

Proposition 10: For any A, B, C  BLC,  

CeA e B iff C e A e B 

 

Proof. Consider only the interesting cases when A, B, C belong to different chains. () If ASCi(U), BSCj(U), then 

one has: if j>i then C e A e B e 1=A e B; if i>j then Ce A e B = A e B. () If CeAeB then Ce AeAe(A e 

B) =    (= CeA e A eB, if A e B); (=Ce A e Ae(AB), if B  e A); ( = C e AA  e B = B, if A | | B). 

 

The residuum operation e satisfies the usual general properties: 

 

R1: 1e A = A  

R2: A e (A e B) e B = B 

R3: (A e A e B)  e B = B 

R4: B e (B e A) = (B e A) e [(B  e A)  e A ] 

R5: A e (B  e C) = (Ae B)  e (A e C) 

R6: A e (B e C) = A e  B e C 

R7: A e (B e C) = (A e B) e (A e C) 

 

The following proposition ends the proof that BLC is a totally ordered BL-algebra: 

 

Proposition 11: For any A, B, C  BLC,  

i) A e B = Ae (A e B) 

ii) (A e B)  (B e A) 

 

Proof. When e =  and e = c no problem. Consider only the cases when A and B belong to different chains. i): 

Suppose that ASCi(U) and BSCj(U), then one has: if j>i then Ae(AeB) = Ae1 = A = Ae B; if i>j then Ae(AeB) 

= =AeB = B = Ae B. ii) Proved in a similar way. 

 

Finally: BLC is a lattice (BLC1.1, BLC1.2), an ordered commutative monoid (BLC2), it has a Galois adjoint pair 

(BLC3), satisfies the condition of pre-linearity ( Proposition 11, ii) ) and the relation between the lattice operation e, the 

monoidal operation e, and his residuum e. ( Proposition 11, i) ), therefore is a BL-algebra, more specifically a BL-

chain.  

 

This BL-chain is denoted as the ordinal sum of the family { SCi (U) }iI.[17] 
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8.  APPLICATIONS 

 
This algebraic approach has been applied to different fields that can be summarized as follows:   

 

In [5] a method for environmental evaluation is illustrated  based on type-2 fuzzy sets and an algebra defined therein. In 

the evaluation model every environmental indicator (security, facilities, environment, social impact, and so on) is a type-

2 fuzzy set. The model has been utilized both to rank the quality of life in some Italian cities and then the environmental 

quality of four sites for a domestic airport near Reykjavik. As regards the Italian cities our approach produces results 

similar to those obtained by statistical methods but one gets a linguistic classification of cities and not a numerical one. 

Also as regards the sites for the airport, the results are similar but the linguistic expressivity is greatly enhanced. 

 

The paper [6]  shows the behaviour of a commutative l-monoid, endowed with a suitable operation of composition, as 

regards the problem of classification with fuzzy attributes. The concepts of relevance and similarity are introduced, then 

a mechanism for weighing the attributes is shown. Finally, a case study concerning graphology is illustrated in details. 

 

In [7] the representation and management of a fuzzy hypermedia is formalized introducing linguistic resource and 

psycho-cognitive profile of the user. The model uses a correspondence between the content of information in the 

hypermedia domain and representation of the users. The stereotype users and the real users are represented by type-2 

fuzzy sets. The domain of the latter is the set of nodes of the hypertext whereas the range are the terms of a t-uple of 

linguistic variables used in the definition of the users’s features.   The user model dynamically updates the representation 

of the real users, realizing full adaptivity with respect both to the presentation and to the navigation.   

 

In [8]  a model of differential medical diagnosis is illustrated, based on type 2 fuzzy sets. Given the patient history case 

and a set of suspected-inherent pathologies, the method creates a set of linguistically labelled clusters of the pathologies. 

The pathologies present in each cluster are ordered through a similarity function. In the case of lack of information, the 

method indicates the elements needed to have a more precise diagnosis and it can control its same accuracy 

 

The paper [9] presents a model for the fuzzy-based analysis of diabetic neuropathy, whose pathogenesis so far is not well 

known. The underlying algebraic structure is a commutative l-monoid, whose support is a set of classifications based on 

the concept of linguistic variable. The analysis is carried out by means of patient's anagraphical and clinical data, e.g. 

age, sex, duration of the disease, insulinic needs, severity of diabetes, possible presence of complications. The results 

obtained are identical with medical diagnoses. Moreover, analyzing suitable relevance factors one gets reasonable 

information about the etiology of the disease. 

 

In [10] classifications are obtained through clusters composed of conventional sets and fuzzy attributes. The expressive 

power of the method is such that several situations can be viewed as classification problems, e.g., fuzzy assessment of 

students, user modelling for fuzzy hypermedia systems, spaces of the cognitive states of the user of a tutoring system, 

financial investments, medical diagnoses. The problem of getting the unknown classification starting from the final 

classification is investigated and it is shown that the problem is strictly related to the solution of an equation in the 

monoid.   Finally, by means of this approach, both the absolute and the relative relevance of an attribute are defined and 

evaluated, given a universe of discourse and a set of classifications.   

9.  CONCLUSIONS 

In this paper the features of a peculiar BL-algebra, defined on some lattices of a specific class of  type-2 fuzzy sets, are 

presented. This algebra has been used in several application fields, using suitable functions, that can be summarized as 

follows: i) The linguistic approximation, which allows to build new linguistic terms from triangular fuzzy numbers 

obtained by composition in S(U), using some basic linguistic term and linguistic hedges; ii) Index of resemblance 

between two elements of S(U); iii) Method for modifying type-2 fuzzy sets, which allows to modify elements of S(U) 

considered more relevant than others with respect to the specific data analysis to be carried out; iv) The relevance 

function, which measures the ability of A (B, respectively) in influencing B (A, respectively) in order to get C=AB. 

  

We think that the properties of this algebra deserve further investigation. In particular, we believe that the t-norms 

properties of the monoidal operation could be used for defining a logical language and a related semantics. Another goal 

is to endow this algebra with type-2 fuzzy similarity and a suitable homomorphism. 

As regards application fields, two areas are currently under investigation: 

Document Search: introduction of linguistic terms to enrich the document metadata and represent user profiles. An 

algorithm for matching user profiles and document metadata could cluster and order the results depending on user needs. 

Learning Assessment: construction of an adaptive automatic system that selects the most suitable questions for 
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evaluating  the student taking into account the sequence of previous learning steps. 
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