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________________________________________________________________________________________________ 

ABSTRACT--- The integration of trapdoor hash function and scheme of digital signature not only enhances the 

security of the signature scheme, but also reduces the online computation during the construction of signatures. Many 

schemes of trapdoor hash function have been proposed. However, many of them are not provably secure. This paper 

proposes a trapdoor hash function based on an extension of k-CAA assumption, i.e. k-ECAA. On the assumption of 

random oracle model and adaptively chosen message attack, a forgery of collision implies solution of k-ECAA 

instance. 
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1.INTRODUCTION 
Hash functions are commonly applied in digital signatures. Digital signing can be divided into three major phases: 

devising signature keys, signing documents and generating signatures, and certifying signatures. In a typical document-

signing process, hash functions are first used to extract the abstract of the document to be signed, and the abstract is then 

digitally signed. 

 

Collision-resistance is a crucial property of traditional hash functions but is selectively established for chameleon 

functions [Krawczyk& Rabin, 2000; Chen, 2014] or trapdoor hash functions[Shamir & Tauman, 2001; Yang, 2009 and 

2013]. This indicates that trapdoor key attackers are unknown, and no algorithms of polynomial time complexity are 

available for calculating collision information (collided preimages). However, trapdoor key holders can efficiently 

identify other collision information and generate identical hash. For example, assume TH() represents the trapdoor hash 

functions, and hash value v = TH(h1). After determining h1, trapdoor key holders can calculate h2, causingv = TH(h2) = 

TH(h1). 

 

This paper presents the design and practical exampleof a trapdoor hash functions on the basis of mathematics problem: 

collusion attack algorithms with k traitors (k-CAAs). In practical example, the system parameter designs, trapdoor hash 

functions, and security properties are discussed. 

 

2.INTRODUCTION TOCOLLUSION ATTACK ALGORITHMS WITH K TRAITORS 
The pairing function e is the primary element inbilinear pairing cryptosystems and pairs the elements in groups G1 and G2 

to another group GT, specifically e: G1G2GT.G1 and G2 are typically expressed as additive groups, and GT is expressed 

as a multiplicative group. The three groups consist of identical orders, which are the large prime q. In practice, the EC 

additive groupG1 = G2 can typically be adopted. GT is the multiplicative group of a finite field. The pairing function e 

adopts either Weil or Tate pairing and comprises bilinear and non degenerative properties:  

 

Bilinearity: Bilinearity is found among the elements P, P1, and P2of the additive group G1 and Q, Q1, and Q2 of group G2. 

 

e(P1 + P2, Q) = e(P1, Q)  e(P2, Q) 

e(P, Q1 + Q2) = e(P, Q1)  e(P, Q2) 
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Non degenerative property: For themultiplicative groupGT, 1 is used as the unit element, whereas O denotes the unit 

element used in the additive groups G1 and G2. For all elements P in G1, e(P, Q) = 1; otherwise,Q = O. For all elements Q 

in G2, e(P, Q) = 1;otherwise,P = O. 

 

When G1 = G2 and P G1, e(P, P) generates the multiplicative groupGT. For Q G1, c = e(P, Q) GT can be calculated. 

However, provided c GT and Q G1, calculating P G1, causesc = e(P, Q)to be difficult. 

 

Bilinear pairing enables the DLP of G1 to be simplified to that of GT, suggesting that the DLP forG1is not more difficult 

than that for GTis.Moreover, G1 demonstrates that decisional Diffie–Hellman problems [Boneh, 1998] can be easily 

solved, whereas computational Diffie–Hellman problems remain challenging, which is referred to as gap groups 

[Okamoto & Pointcheval, 2001]. These results facilitate the security certification of crytographic protocols. Researchers 

have recently studied bilinear pairing cryptosystems [Boneh, Lynn, &Shacham, 2001; Lin, 2010; Hoffstein, Pipher, & 

Silverman, 2014]. These studies have revealed crucial applications of these cryptosystems, including the k-

CAA[Mitsunari, Sakai,&Kasahara, 2002; Yang, Ma,& Wang, 2006; Dutta, Barua, & Sarkar, 2004;Tso, Yi, & Hung, 

2008; Tsai, Wuand, & Hsu, 2011]. 

 

Definition 2.1.k-CAA problems: k is an integer, PG1, and xRZ
 

q.{P, Q = xP, h1, h2, …, hkZ
 

q, P/(h1 + x), P/(h2 + x),…, 

P/(hk + x)} is provided, and P/(h + x) is calculated, in which h {h1, h2, …, hk}. 

 

The symbol(, t)-break-k-CAA denotes the presence of an algorithm A that solves the k-CAA problem within the time 

limit t with a probability no less than . 
 

Definition 2.2.(, t)-k-CAA assumption: No (, t)-break-k-CAA algorithms exist in cyclic group G1. 

 

The numerator of P/(hi + x) is multiplied by (ri/hi), in which riRZ
 

q. The originally defined k-CAA problem is rewritten. 

K is an integer, P G1, x RZ
 

q, and {P, PPub = xP, R2k = {(hi, ri)}| (hi, ri)  {Z
* 

q }
2
, and i = 1, 2, …, k} as well as 

{P/(r1/h1x + r1), P/( r2/h2x + r2),…, and P/(rk/hkx + rk)} are provided. This outputs are (h, r)  {Z
* 

q }
2
 and P/(r/hx + r) 

G1, in which (h, r)R2k. Additionally, the relationship between P/(ri/hix + ri) G1 and (hi, ri)can be specified using the 

equation e(P/(ri/hix + ri), ri/hiPPub + riP) = e(P, P), thus obtaining the following modified k-CAA problem: 

 

Definition 2.3. The extension of the collusion attack algorithms with k-traitors (k-ECAA) problem: k is an integer, 

P G1, x RZ
 

q.{P, PPub = xP, R2k = {(hi, Ri)| (hi, Ri) Z
* 

qG1, and i = 1, 2, …, k}, and S1k = {Si| e(Si, hiPPub + Ri) = e(P, P), 

(hi, Ri) R2kand i = 1, 2, …, k} are provided, outputting(h, R, S) Z
* 

q {G1}
2
, in which(h, R)R2k. 

 

Inference 2.4.(, t)-k-ECAA assumption: k-ECAA problems are not less complicated thank-CAA problems. 

 

Proof. The relationship between Si = P/(ri/hix + ri) G1 and (hi, ri, Ri) is specified using the equation e(P/(ri/hix + ri), 

ri/hiPPub + Ri) = e(P, P). A unique Ri can satisfy every hi equation that is provided. Subsequently, the numerator of P/(hi 

+ x) is multiplied by (ri/hi), in which riRZ
 

q. Because ri is a random number, multiplying the numerator by a random 

number cannot reduce the complexity of the problem. Therefore, k-ECAA problems are not less complicated than k-

CAA problems. 

 

3. TRAPDOOR HASH FUNCTION BASED ON K-ECAA 
This section elucidates the k-ECAA trapdoor hash functions, which comprise algorithms for setting system parameters 

and keys as well as generating and verifying collision information: 

 

Parameter Setup: Operating cyclic groups G1 and GT, bilinear pairing function e, and hash functions H(): {0, 1}*Z
 

q 

are selected, in which H() must satisfy the properties of secure hash functions. Next, the system parameters params = 

(G1, G2, e, q, P) and H() are made public.  

 

Key setup: The user IDu selects and secretly collects the trapdoor key uR Zq and calculates and makes public the 

validation keyU1 = uP G1. 

 

Generating collision information: IDu owns the trapdoor key and therefore can efficiently calculate the collision 

information (R, S) to restore the validation key. Provided that IDu has formulated message (m), the collision information 

can be calculated as follows: 

 

rRZ
 

q, R = r P G1 

h = H(m, R) 
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S = P/(hu + r) G1 

 

The validation keyU1 and collision information(R, S) are equivalent to the public signature information Ppub and 

signature[Zhang, Safavi-Naini, &Susilo, 2004], but a probability approach is adopted here to generate the collision 

information. 

 

Verifying collision information: When the authenticator receives the collision information(R, S) and message m, the 

checking procedure is performed as follows:  

 

h = H(m, R) 

e(S, hU1 + R)
? 

=e(P, P) 

 

where, 
? 

=  denotes testing the equivalence of the terms on the two sides of the symbol. When the two sides equate, 

authentication succeeds, and (R, S, m) is confirmed as the collision information and message of the validation 

keyU1;otherwise, authentication fails. The term e(P, P) on the right-hand side of the certification equation may 

demonstrate various concepts other than those of the restored validation keyU1, but this difference results from the 

simplification process. When S= uP/(hu + r) is adopted to calculate the collision information, the right-hand side of the 

certification equation becomes e(U1, P) = e(P, P)
u
, which is the restored validation key. 

 

4. SECURITY OF THEPROPOSED TRAPDOOR HASH FUNCTION 
The model assumptions of ROM [Bellare and Rogaway, 1993] and adaptively chosen message attack [Goldwasser, 

Micali, and Rivest, 1988]are adopted to prove the security of the proposed scheme. Theorem 4.1.proves that when the (, 

t, qh, qs)-forge algorithm exists in the k-CAA trapdoor hash functions, the (, t)-break-k-ECAA algorithm also exist in 

the cyclic group G1, in which t = t, and =  (qs/qh)
qs

. 

 

Theorem 4.1.If the k-ECAA trapdoor hash function is (, t, qh, qs)-forge, then the (, t)-break-k-ECAA algorithm exists 

in the cyclic groupG1, in which =  (qs/qh)
qs

, t = t, and k > qs. 

 

Proof. Symbol A is used to represent the challenger, and F is used to represent the forger(, t, qh, qs)-forge. A is 

provided with the system parameters params = (G1, G2, e, q, P, H()), an actual k-ECAA example {P, PPub = x P, R3k = 

{(hi, mi, Ri)| hi = H(mi, Ri) Z
* 

q , mi {0, 1}*, RiG1,and i = 1, 2, …, qs}, and S1k = {Si| e(Si, hiPPub + Ri) = e(P, P), hi = 

H(mi, Ri),(hi, mi, Ri) R3k, and i = 1, 2, …, qs }. A simulates hash functions and generates hashes and signature 

information to respond to the demand of Forger F. The aim is to use the ability of F to forge to calculate (h, m, R) and S, 

causing h = H(m, R) and e(S, hPPub + R) = e(P, P), in which (h, m, R)R3k. 

 

Public key: P denotes the public key, PPub G1, and params represents the system parameters. 

 

A prepares the hash table Th: A generates a hashed set Hs = {h1, h2, …,hqS}, in which Hq = {aiRZ
* 

q | i = 1, 2, …, qh-qs} 

and  = Hs Hq. The hash tableTh has a qh4 format. For j = 1, 2,…, qh, A arbitrarily selects elements from the union of 

sets Hs and Hq and places the elements into Th[j, 1] without repetition. When Th[j, 1] = hi, selections are made in set Hs; 

corresponding signature information Si is then filled into Th[j, 2], and message (mi, Ri) is filled into Th[j, 3] and Th[j, 4]. 

 

F requests the hashes for (mi, Ri): A searches the hash tableTh[j, 3] according to sequence, beginning from j = 1. For 

any corresponding data on the jth row that satisfies Th[j, 3] = mi andTh[j, 4] = Ri, Th[j, 1] is returned to F; otherwise, A 

fills (mi, Ri) into Th[j, 3] and Th[j, 4] and returns Th[j, 1] to F, in which j  qh is the minimal integer rendering Th[j, 3] and 

Th[j, 4] as null data. 

 

F requeststhe signature information for message mi: Assuming the hashes for (mi, Ri) have been designated, A 

searches the hash table Th[j, 3] beginning from j = 1 to identify the corresponding data Th[j, 3] = mi on the jth row. IfTh[j, 

2] is null data, A fails; otherwise, signature information Th[j, 2] and Th[j, 4] are returned to F. 

 

ForgerF can request the hash and signature information for arbitrary information (mi, Ri) at any time and may ultimately 

generate forged signature information (m*, R*, S*) for A, in which m* = mi* and 1  i* qh. Through qs number 

ofrequests for signature information, the condition H(m*, R*)  Hs can be confirmed. Therefore, A obtains (h, m, R) and 

S, causing h = H(m, R) and e(S, hPPub + R) = e(P, P) (R, S) P/(h + x), in which hHs = { h1, h2, …, hqs}. Because A 

generates signature information at a success rate of qs/qh, the probability of successful requests for signature information 

by F after qs trials is (qs/qh)
qs

. Specifically, when F can generate the (, t, qh, qs)-forge signature information, the 

algorithm (, t)-break-k-ECAA exists in cyclic groupG1, in which =  (qs/qh)
qs

, and t =t. 
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5. CONCLUSIONS 
 

Trapdoor hash functions can aid any signature scheme to securely generate signatures online efficiently. This paper extends 

the assumption of k-CAA to the k-ECAA. The later assumption is at least as hard as the first assumption. Then, a trapdoor 

hash function based on the intractability of k-ECAA is proposed. The discussion of security uses the ROM and adaptively 

chosen message attack to simulate the adversary’s attack. A forgery of hash collision means an instance of k-ECAA is 

solved. Thus, certifies the security of the proposed scheme.  
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