Nitrogen Content and Carbon Stock Prediction in Oil Palm using Satellite Image Analysis

Tri Mulyadi, Mr. Hariyadi, Mr. Sudradjat, Mr. Kustiyo

Abstract


Nitrogen content and carbon stock prediction method using satellite image analysis is inexpensive, time-saving, labor-saving and accurate.  This research aimed to predict nitrogen content and carbon stock on oil palm using satellite imagery. The research was conducted at IPB-Cargill Teaching Farm of Oil Palm, Jonggol, Bogor Indonesia, starting from August until October 2016. Landsat 8 satellite imagery was used in this research with the digital number classes 17,000 – 22,000. Leaf nitrogen content observed in the field, analyzed using Kjeldahl digestion method.  Carbon stock was obtained using allometric method (above ground biomass =0.0976*Height+0.0706). The sampling of the leaves frond number 17 and plant height of oil palm plant respectively was 25 samples. Prediction model used weighted least square regression between the actual nitrogen content and the digital number, band reflectance, vegetation index. The same model was used to estimate carbon stocks. The result showed that the best model to estimate nitrogen content using the band reflectance with R2 = 0.964, and vegetation index with R2 = 0.987. The best model for estimate carbon stocks using digital number with R2 = 0.874, band reflectance, with R2 = 0.856, and vegetation index with R2 = 0998. There was a similarity between actual measurement and model for predicting nitrogen content and carbon stocks. 


Keywords


satellite imagery, vegetation index, nitrogen, carbon stock

Full Text:

PDF

References


Henson, R. 1999. The Rough Guide to Climate Change, New York (US).

Corley RHV, PB Tinker. 2003. The Oil Palm. 4th ed. Oxford (US). Blackwell Science.

[IPCC] International Panel for Climate Cange. 2006. Guidelines for National Greenhouse Gas Inventories. Chapter 5. Vol. 4.

Brown S, G Gaston. 1996. Estimated biomass density for tropical forest. Biomass burning and global change. London. 1 (1) : 133-139.

Ibrahim AL, Hasyim M, Ali MI, Rasib W, Kadir WHW, Sumari MR, Haron K. 2003. Detecting and mapping nutrient concentration in oil palm plantation using remote sensing and geographic information system. Proceeding of the PIPOC International Palm Oil Congress (Agriculture), pp. 261-271.

Wang Z, Wang T, Darvishzadeh R, Skidmore AK, Jones S, Suarez L, Woodgate W, Heiden U, Heurich M, Hearne J. 2016. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest. MDPI [Internet]. [diunduh 2017 Maret 1]; Remote Sens. 2016, 8, 491; doi:10.3390/rs8060491 ready at: www.mdpi.com/journal/remotesensing.

Psomas A, Kneubühler M, Huber S, Itten K, Zimmermann Ne. 2011. Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats. International Journal of Remote Sensing Vol. 32, No. 24, 20 December 2011, 9007–9031.

Freeman KW, Daryl KG, Robert ARW, Kent LM, Roger KT M, William RR. 2007. By-Plant Prediction of Corn Forage Biomass and Nitrogen Uptake at Various Growth Stages Using Remote Sensing and Plant Height. Agron. J. 99:530–536 (2007). Remote Sensing doi:10.2134/agronj2006.0135 ª American Society of Agronomy 677 S. Segoe Rd., Madison, WI 53711 USA

Lawlor DW. 1993. Photosynthesis molecular, physiological, and environmental processes. Longman scientific&technical. Essex (UK).

Saputra H, Yahya S. 2015. Optimasi Paket Pupuk Tunggal pada Tanaman Kelapa Sawit Belum Menghasilkan Umur Satu Tahun”, J. Agron, vol. 43 (2), pp. 161 – 167, Bogor (INA).

Faustina E, Sudradjat, Supijatno. 2015. Optimization of Nitrogen and Phosphorus Fertilizer on Two Years Old of Oil Palm(Elaeis guineensis Jacq.). Asian Journal of Applied Sciences (ISSN: 2321 – 0893) Volume 03 – Issue 03, June 2015.

Manurung ANH. Sudradjat, Hariyadi. 2015. Optimization Rate of Organic and NPK Compound Fertilizers on Second Year Immature Oil Palm. Asian Journal of Applied Sciences (ISSN: 2321 – 0893) Volume 03 – Issue 03, June 2015

Lee Yuh-Jyuan, Yang Chwen-Ming, Chang Kuo-Wei, Shen Yuan. 2011 Effect of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice, J Botanical Studies, vol. 52, pp. 295-303.

Christensen, LK. 2004. NPK Deficiencies Discrimination by Use of Spectral and Spatial Response (Disertasi). Denmark (DM). The Royal Veterinary and Agricultural University.

Ma BL, Dwyer LM, Costa C, Cober ER, Morrison MJ. 2001. Early prediction of soybean yield from canopy reflectance measurements. J Agron, vol. 93, vol. 1227-1234.

Adamsen FJ, Pinter PJ, Barnes EM, Lamorte RL, Wall GW, Leavitt SW, Kimball BA. 1999. Measuring wheat senescence with a digital camera”, J Crop Sci, vol. 39, pp 719-724.

[USGS] United States of Geological Survey. 2013. Landsat - A global land imaging. https://pubs.usgs.gov/fs/2012/3072/fs2012-3072.pdf 2013. Download at 20 March 2017.

Jensen, JR. 1986. Introductory Digital Image Processing. Prentice-Hall Engelwood. New Jersey (US)

Perry, E.M.; Davenport, J.R. 2007. Spectral and spatial differences in response of vegetation indices to nitrogen treatments on apple. Computers and Electronics in Agriculture, v.59, p.56‑65, 2007. DOI: 10.1016/j.compag.2007.05.002.

Li F., Gnyp M.L., Jia L., Miao Y., Yu Z., Koppe W., Bareth G., Chen X., Zhang F. 2008. Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. Field Crop Research 106, 77–85

Lo, CP. 1996. Penginderaan Jauh Terapan (terjemahan). Penerbit Universitas Indonesia. Jakarta (ID).

Budi, C. 2000. Model Penduga Indeks Luas Daun Menggunakan Data Landsat Thematic Mapper (TM) dan SPOT Multispectral (XS) di Hutan Mangrove (Studi Kasus Segara Anakan Cilacap) (Tesis). Institut Pertanian Bogor, Bogor (ID).

Bausch W.C., Khosla R. 2010. QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precision Agriculture 11, 274–290.

Hunt E.R., Rock B.N., Nobel P.S. 1987. Measurement of leaf relative water content by infrared reflectance. Remote Sensing of Environment 22, 429–435.

Jia L., Yu Z., Li F., Gnyp M., Koppe W., Bareth G., Miao Y., Chen X., Zhang F. 2011. Nitrogen status estimation of winter wheat by using an Ikonos satellite image in the north china plain. Computer and computing technologis in agriculture V. 5 th IFIP TC5/SIG 5,1 Conference, CCTA 2011 Beijing, Cina, October 2011 Proceedings, Part II.

ICRAF. 2009. Cadangan Karbon di Kabupaten Nunukan, Kalimantan Timur”, Word Agroforestry Centre ICRAF SEA Regional Office; Malang (ID).

Mattjik AA, Sumertajaya IM. 2013. Perancangan Percobaan dengan SAS dan Minitab (Jilid I). IPB Press. Bogor (ID).

Lee Yuh-Jyuan, Yang Chwen-Ming, Chang Kuo-Wei, Shen Yuan. 2011. Effect of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. J Botanical Studies, vol. 52, pp. 295-303.

Starks P J, Zhao D, Phillips WA, Coleman SW. 2006. Development of Canopy Reflectance Algorithms for Realtime Prediction of Bermuda Grass Pasture Biomass and Nutritive Values. J. Crop Sci., vol. 46, pp. 927-934.

Yoder BJ, Pettigrew-Crosby RE. 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53(3), pp. 199–211.

Ozyigit Y, Bilgen M. Use spectral reflectance values for determining nitrogen, phosphorus, and potassium contents of rangeland plants. J Agr.Sci.Tech, vol. 15, pp. 1537-1545.

Uexkull HR, Fairhurs TM. 1991. Fertilizing for hight yield and quality the oil palm”, Bulletin IPI, Vol. 2, pp. 79.

Purba, KD, Rahmawaty, Riswan. 2013. Pendugaan Cadangan Karbon Above Ground Biomass (AGB) pada Tegakan Sawit (Elaeis queneensis Jacq) di Kabupaten Langkat”, J Peronema Forestery Science Journal, Vol. 2, No 1 (2013). ISSN 1829-6343.

Sudradjat. 2016. Oil Palm: increasing productivity”, IPB Press, Bogor (ID).

Nguyen, Tran Nguyen , Kazuo Nakabayashi , Pravat K. Mohapatra , Julian Thompson, Kounosuke Fujita. 2003. Effect of nitrogen deficiency on biomass production, photosynthesis, carbon partitioning, and nitrogen nutrition status of Melaleuca and Eucalyptus species. Soil Science and Plant Nutrition, 49:1, 99-109, DOI: 10.1080/00380768.2003.10409985.

Pinter, Paul J. Jr, Hatfield, Jerry L, Schepers, James S, Barnes, Edward M, Moran, M. Susan, Daughtry, Craig ST, Upchurch, DR. 2003. Remote Sensing for Crop Management. Publications from USDA-ARS / UNL Faculty.Paper 1372. http://digitalcommons.unl.edu/usdaarsfacpub/1372.




DOI: https://doi.org/10.24203/ajas.v5i4.4899

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.