# Kind of Weak Separation Axioms by $D_{\omega}, D_{\alpha-\omega}, D_{\text {pre- }}, D_{b-\omega}$ and $D_{\beta-\omega}-$ Sets 

Mustafa H. Hadi<br>(Babylon/ Hillah, Iraq)<br>University of Babylon, College of Education for Pure Science, Mathematics Department

Email: mustafahh1984 [AT] uobabylon.edu.iq


#### Abstract

ABSRACT--- In this paper we define new types of sets we call them $D_{\omega}, D_{\alpha-\omega}, D_{p r e-\omega}, D_{p r e-\omega}, D_{b-\omega}$, and $D_{\beta-\omega}$-sets and use them to define some associative separation axioms. Some theorems about the relation between them and the weak separation axioms introduced in [5] are proved, with some other simple theorems.


Keywords--- Separation axioms, weak open sets, $T_{i}$ spaces.

## 1. INTRODUCTION

Throughout this paper, ( $\mathrm{X}, \mathrm{T}$ ) stands for topological space. Let ( $\mathrm{X}, \mathrm{T}$ ) be a topological space and A a subset of X . A point $x$ in $X$ is called condensation point of $A$ if for each $U$ in $T$ with $x$ in $U$, the set $U \cap A$ is uncountable [6]. In 1982 the $\omega$-closed set was first introduced by H. Z. Hdeib in [6], and he defined it as: A is $\omega$-closed if it contains all its condensation points and the $\omega$-open set is the complement of the $\omega$-closed set. Equivalently. A sub set $W$ of a space ( $X, T$ ), is $\omega$-open if and only if for each $x \in W$, there exists $U \in T$ such that $x \in U a n d ~ U \backslash W$ is countable. The collection of all $\omega$-open sets of (X,T) denoted $T_{\omega}$ form topology on $X$ and it is finer than T. Several characterizations of $\omega$-closed sets were provided in [1,6,7].

In $[3,8,9]$ some authors introduced $\alpha$-open , pre -open, $b$-open, and $\beta$-open sets. On the other hand in [10] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced the notions $\alpha-\omega$-open, pre $-\omega-$ open, $\beta-\omega-$ open, and b $-\omega$-open sets in topological spaces. In [2,5] used the $\omega$ - open sets to define types of weak separation axioms called $\omega-R_{0}, \omega-R_{1}$ and $\omega^{*}-T_{1}$ spaces.They defined them as follows:

Definition 1.1. [10] A subset A of a space $X$ is called:

1. $\alpha-\omega$-open if $\mathrm{A} \subseteq \operatorname{int}_{\omega}\left(\operatorname{cl}\left(\operatorname{int}_{\omega}(\mathrm{A})\right)\right)$ and the complement of the $\alpha-\omega$-open set is called $\alpha-\omega$-closed set.
2. pre $-\omega$-open if $\mathrm{A} \subseteq \operatorname{int}_{\omega}(\mathrm{cl}(\mathrm{A}))$ and the complement of the pre $-\omega$-open set is called pre $-\omega$-closed set.
 set.
3. $\beta-\omega$-open if $A \subseteq \operatorname{cl}\left(\operatorname{int}_{\omega}(\operatorname{cl}(A))\right)$ and the complement of the $\beta-\omega$-open set is called $\beta-\omega$-closed set.

In [10] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced relationships among the weak open sets above by the lemma below:

Lemma 1.2. [10] In any topological space:

1. Any open set is $\omega$-open.
2. Any $\omega$-open set is $\alpha-\omega$-open.
3. Any $\alpha-\omega$-open set is pre $-\omega$-open.
4. Any pre $-\omega$-open set is $b-\omega$-open.
5. Any $b-\omega$-open set is $\beta-\omega$-open.

The converse is not true [10].
For our results in this paper we need the following definitions:
Definition 1.3. [10] A subset A of a space $X$ is called

1. An $\omega-t-\operatorname{set}$, if $\operatorname{int}(A)=\operatorname{int}_{\omega}(\operatorname{cl}(A))$.
2. An $\omega-B-$ set if $A=U \cap V$, where $U$ is an open set and $V$ is an $\omega-t-$ set.
3. An $\omega-t_{\alpha}-$ set, if $\left.\operatorname{int}(A)=\operatorname{int}_{\omega}\left(\operatorname{cl}^{\left(\operatorname{int}_{\omega}\right.}(\mathrm{A})\right)\right)$.
4. An $\omega-B_{\alpha}-$ set if $A=U \cap V$, where $U$ is an open set and $V$ is an $\omega-t_{\alpha}-$ set.
5. An $\omega$-set if $A=U \cap V$, where $U$ is an open set and $\operatorname{int}(V)=\operatorname{int}_{\omega}(V)$.

Definition 1.4. [5] Let ( $X, T$ ) be topological space. It said to be satisfy

1. The $\omega$-condition if every $\omega$-open set is $\omega-\mathrm{t}$-set.
2. The $\omega-B_{\alpha}$-condition if every $\alpha-\omega$-open set is $\omega-B_{\alpha}-$ set.
3. The $\omega-\mathrm{B}$-condition if every pre $-\omega$-open is $\omega-\mathrm{B}-$ set.

Lemma 1.5. [10] For any subset $A$ of a space $X$, We have

1. A is open if and only if A is $\omega$-open and $\omega$-set.
2. $A$ is open If and only if $A$ is $\alpha-\omega$-open and $\omega-B_{\alpha}-$ set.
3. A is open if and only if $A$ is pre $-\omega$-open and $\omega-B-$ set.

Lemma 1.6. If ( $X, T$ ) is a door space, then
1.Every pre $-\omega$-open set is $\omega$-open. [10]
2.Every $\beta-\omega$-open set is is $b-\omega$-open.[5]

Lemma 1.7. [10] Let ( $X, T$ ) be a topological space and let $A \subseteq X$. If $A$ is $b-\omega$-open set such that int ${ }_{\omega}(A)=\emptyset$, then A is pre $-\omega$-open.
The classes of the sets in Definition 1.1 are larger than that sets in [3,8,9]. In [5] we introduce some weak separation axioms by utilizing the notions of T. Noiri, A. Al-Omari, M. S. M. Noorani. Let us summarize them in the following definitions.

Definition 1.3.[5] Let $X$ be a topological space. If for each $x \neq y \in X$, either there exists a set $U$, such that $x \in U, y \notin$ $U$,or there exists a set $U$ such that $x \notin U, y \in U$. Then $X$ called

1. $\omega-T_{0}$ space, whenever $U$ is $\omega$-open set in $X$.
2. $\alpha-\omega-T_{0}$ space, whenever $U$ is $\alpha-\omega-$ open set in $X$.
3. pre $-\omega-T_{0}$ space, whenever $U$ is pre $-\omega-$ open set in $X$.
4. $b-\omega-T_{0}$ space, whenever $U$ is $b-\omega$-open set in $X$.
5. $\beta-\omega-T_{0}$ space, whenever $U$ is $\beta-\omega-$ open set in $X$.

Definition 1.4.[5] Let $X$ be a topological space. For each $x \neq y \in X$, there exists a set $U$, such that $x \in U, y \notin U$, and there exists a set $V$ such that $y \in V, x \notin V$, then $X$ is called

1. $\omega-T_{1}$ space if $U$ is open and $V$ is $\omega$-open sets in $X$.
2. $\alpha-\omega-T_{1}$ space if $U$ is open and $V$ is $\alpha-\omega-$ open sets in $X$.
3. $\omega^{\star}-T_{1}$ space [1] if $U$ and $V$ are $\omega$-open sets in $X$.
4. $\alpha-\omega^{\star}-T_{1}$ space if $U$ is $\omega$-open and $V$ is $\alpha-\omega$-open sets in $X$.
5. $\alpha-\omega^{\star \star}-T_{1}$ space if $U$ and $V$ are $\alpha-\omega$-open sets in $X$.
6. pre $-\omega-T_{1}$ space if $U$ is open and $V$ is pre $-\omega$-open sets in $X$.
7. pre $-\omega^{\star}-T_{1}$ space if $U$ is $\omega$-open and $V$ is pre $-\omega$-open sets in $X$.
8. $\alpha-$ pre $-\omega-T_{1}$ space if $U$ is $\alpha-\omega-$ open and $V$ is pre $-\omega$-open sets in $X$.

9．pre $-\omega^{\star \star}-T_{1}$ space if $U$ and $V$ are pre $-\omega-$ open sets in $X$ ．
10．$b-\omega-T_{1}$ space if $U$ is open and $V$ is $b-\omega-$ open sets in $X$ ．
11．$b-\omega^{\star}-T_{1}$ space if $U$ is $\omega$－open and $V$ is $b-\omega$－open sets in $X$ ．
12．$\alpha-b-\omega-T_{1}$ space if $U$ is $\alpha-\omega$－open and $V$ is $b-\omega$－open sets in $X$ ．
13．pre $-b-\omega-T_{1}$ space if $U$ is pre $-\omega$－open and $V$ is $b-\omega$－open sets in $X$ ．
14． $\mathrm{b}-\omega^{\star \star}-\mathrm{T}_{1}$ space if U and V are $\mathrm{b}-\omega$－open sets in X ．
15．$\beta-\omega-T_{1}$ space if $U$ is open and $V$ is $\beta-\omega$－open sets in $X$ ．
16．$\beta-\omega^{\star}-T_{1}$ space if $U$ is $\omega$－open and $V$ is $\beta-\omega$－open sets in $X$ ．
17．$\alpha-\beta-\omega-T_{1}$ space if $U$ is $\alpha-\omega$－open and $V$ is $\beta-\omega-$ open sets in $X$ ．
18．国国回——国—国 space if U is pre $-\omega$－open and V is $\beta-\omega$－open sets in X ．
19．$\beta-\omega^{\star \star}-T_{1}$ space if $U$ and $V$ are $\beta-\omega-$ open sets in $X$ ．
20．$b-\beta-\omega-T_{1}$ space if $U$ is $b-\omega$－open and $V$ is $\beta-\omega$－open sets in $X$
Definition 1．5．［5］Let $X$ be a topological space．And for each $x \neq y \in X$ ，there exist two disjoint sets $U$ and $V$ with $x \in U$ and $y \in V$ ，then $X$ is called：

1．$\omega-T_{2}$ space if $U$ is open and $V$ is $\omega$－open sets in $X$ ．
2．$\alpha-\omega-T_{2}$ space if $U$ is open and $V$ is $\alpha-\omega-$ open sets in $X$ ．
3．$\omega^{\star}-T_{2}$ space if $U$ and $V$ are $\omega$－open sets in $X$ ．
4．$\alpha-\omega^{\star}-T_{2}$ space if $U$ is $\omega$－open and $V$ is $\alpha-\omega$－open sets in $X$ ．
5．$\alpha-\omega^{\star \star}-T_{2}$ space if $U$ and $V$ are $\alpha-\omega$－open sets in $X$ ．
6．pre $-\omega-T_{2}$ space if $U$ is open and $V$ is pre $-\omega$－open sets in $X$ ．
7．pre $-\omega^{\star}-T_{2}$ space if $U$ is $\omega$－open and $V$ is pre $-\omega$－open sets in $X$ ．
8．$\alpha-$ pre $-\omega-T_{2}$ space if $U$ is $\alpha-$ open and $V$ is pre $-\omega$－open sets in $X$ ．
9．pre $-\omega^{\star \star}-T_{2}$ space if $U$ and $V$ are pre $-\omega-$ open sets in $X$ ．
10．$b-\omega-T_{2}$ space if $U$ is open and $V$ is $b-\omega$－open sets in $X$ ．
11．$b-\omega^{\star}-T_{2}$ space if $U$ is $\omega$－open and $V$ is $b-\omega$－open sets in $X$ ．
12．$\alpha-b-\omega-T_{2}$ space if $U$ is $\alpha-\omega$－open and $V$ is $b-\omega$－open sets in $X$ ．
13．pre $-b-\omega-T_{2}$ space if $U$ is pre $-\omega$－open and $V$ is $b-\omega$－open sets in $X$ ．
14．$b-\omega^{\star \star}-T_{2}$ space if $U$ and $V$ are $b-\omega-$ open sets in $X$ ．
15．$\beta-\omega-T_{2}$ space if $U$ is open and $V$ is $\beta-\omega$－open sets in $X$ ．
16．$\beta-\omega^{\star}-T_{2}$ space if $U$ is $\omega$－open and $V$ is $\beta-\omega$－open sets in $X$ ．
17．$\alpha-\beta-\omega-T_{2}$ space if $U$ is $\alpha-\omega-$ open and $V$ is $\beta-\omega-$ open sets in $X$ ．
18．pre $-\beta-\omega-T_{2}$ space if $U$ is pre $-\omega-$ open and $V$ is $\beta-\omega-$ open sets in $X$ ．
19．$\beta-\omega^{\star \star}-T_{2}$ space if $U$ and $V$ are $\beta-\omega$－open sets in $X$ ．
20．$b-\beta-\omega-T_{2}$ space if $U$ is $b-\omega-$ open and $V$ is $\beta-\omega-$ open sets in $X$ ．

## 2． $\mathrm{D}_{\boldsymbol{\omega}}, \mathrm{D}_{\alpha-\omega}, \mathrm{D}_{\text {pre－}-}, \mathrm{D}_{\boldsymbol{b}-\omega}$ AND $\mathrm{D}_{\boldsymbol{\beta}-\omega}$－SETS

In this article we shall define new types of sets and use them to define new spaces with associative separation axioms．

Definition 2.1. A subset $A$ of a topological space ( $X, T$ ) is called $D-\operatorname{set}[4]$ (resp. $D_{\omega}-$ set, $D_{\alpha-\omega}-$ set, $D_{\text {pre- }}-$ set, $D_{b-\omega}-$ set, $D_{\beta-\omega}-$ set ). If there are two open (resp. $\omega-$ open, $\alpha-\omega$-open, pre $-\omega-$ open, $\beta-\omega-$ open, and $b$ $-\omega$-open ) sets $U$ and $V$ with $U \neq X$ and $A=U \backslash V$.

Remark 2.2. It is true that every $\omega$-open, ( resp. $\alpha-\omega$-open, pre $-\omega$-open, $b-\omega$-open, and $\beta-\omega$-open ) set $U \neq X$ is $D_{\omega}-$ set ( resp. $D_{\alpha-\omega}-$ set, $D_{\text {pre- }}-$ set, $D_{b-\omega}-$ set, and $D_{\beta-\omega}-$ set $)$ if $A=U$ and $V=\emptyset$.
Using Definition 2.1 and Lemma1.2, Lemma 1.6, and Lemma1.5 we can easily prove the following Propositions:
Proposition 2.3. In any topological space $X$.

1. Any D - set is $D_{\omega}$-set.
2. Any $D_{\omega}-$ set is $D_{\alpha-\omega}-$ set.
3. Any $D_{\alpha-\omega}$-set is $D_{\text {pre- } \omega}$-set.
4. Any $D_{\text {pre- } \omega}$-set is $D_{b-\omega}$-set.
5. Any $\mathrm{D}_{\mathrm{b}-\omega}$-set is $\mathrm{D}_{\beta-\omega}$-set.

Proposition 2.4. In any topological door space :
1.Any $D_{\text {pre- } \omega}-$ set is $D_{\omega}-$ set.
2.Any $D_{\beta-\omega}-$ set is $D_{b-\omega}$-set.

Proposition 2.5. In any topological space satisfies $\omega$-condition. Any $D_{\omega}$-set is $D$-set.
Proposition 2.6. In any topological space satisfies $\omega-B_{\alpha}$-condition. Any $D_{\alpha-\omega}$-set is $D$-set.
Proposition 2.7. In any topological space satisfies $\omega-B-$ condition. Any $D_{\text {pre }-\omega}-$ set is $D-$ set.
Proposition 2.8. In any topological space. Any $D_{b-\omega}$-set with empty $\omega$-interior is $D_{\text {pre- }}$-set .

## Proof:

Let X be a topological space, and let A be a $\mathrm{D}_{\mathrm{b}-\omega}$-set with empty $\omega$-interior in X , then there are two $\mathrm{b}-\omega$-open which are by Lemma 1.7 also pre $-\omega$-open sets $U$ and $V$ with $U \neq X$, and $A=U \backslash V$
Similarly we can prove the other cases.
From the lemmas above we can get the following figure:


Figure 1: Relation among the weak D-sets

$$
\text { 3. } \mathrm{D}_{\omega}, \mathrm{D}_{\alpha-\omega}, \mathrm{D}_{\text {pre- }-}, \mathrm{D}_{b-\omega} \text { AND } \mathrm{D}_{\beta-\omega} \text {-SETS AND ASSOCIATIVE SEPARATION AXIOMS }
$$

Utilizing the weak $D_{\omega}$ sets we can define our separation axioms as follows:
Definition 3.1. Let $X$ be a topological space. If $x \neq y \in X$, either there exists a set $U$, such that $x \in U, y \notin U$, or there exists a set $U$ such that $x \notin U, y \in U$. Then $X$ called

1. $\boldsymbol{\omega}-\boldsymbol{D}_{\mathbf{0}}$ space, whenever $U$ is $D_{\omega}-$ set in $X$.
2. $\boldsymbol{\alpha}-\boldsymbol{\omega}-\boldsymbol{D}_{\mathbf{0}}$ space, whenever $U$ is $D_{\alpha-\omega}-$ set in $X$.
3. pre- $\omega-D_{0}$ space, whenever $U$ is $D_{\text {pre- } \omega}-$ set in $X$.
4. $\boldsymbol{b}-\boldsymbol{\omega}-\boldsymbol{D}_{\mathbf{0}}$ space, whenever $U$ is $D_{b-\omega}-$ set in $X$.
5. $\beta-\omega-D_{0}$ space, whenever $U$ is $D_{\beta-\omega}-$ set in $X$.

Definition 3.2. We can define the spaces $\omega-D_{i}, \alpha-\omega-D_{i}$, pre $-\omega-D_{i}, b-\omega-D_{i}, \beta-\omega-D_{i}$, for $i=0,1,2$. And $\omega^{\star}-D_{i}, \alpha-\omega^{\star}-D_{i}, \alpha-\omega^{\star \star}-D_{i}$, pre $-\omega^{\star}-D_{i}, \alpha-$ pre $-\omega-D_{i}$, pre $-\omega^{\star \star}-\mathrm{D}_{\mathrm{i}}, \mathrm{b}-\omega^{\star}-\mathrm{D}_{\mathrm{i}}$, pre -$b-\omega-D_{i}, \alpha-b-\omega-D_{i}, \quad b-\omega^{\star \star}-D_{i}, \beta-\omega^{\star}-D_{i}, \alpha-\beta-\omega-D_{i}, \operatorname{pre}-\beta-\omega-D_{i}, \beta-\omega^{\star \star}-D_{i}$, and $b-\beta-\omega-D_{i}$, for $i=1,2$, by replacing the sets: open, $\omega-$ open, $\alpha-\omega$-open, pre $-\omega$-open, $b-\omega$-open, $\beta-\omega$ open, by the $D-$ set, $D_{\omega}-$ set,$D_{\alpha-\omega}-$ set, $D_{\text {pre }-\omega}-$ set, $D_{b-\omega}-$ set, and $D_{\beta-\omega}-$ set respectively, in Definition 1.3, Definition 1.4, and Definition 1.5.

Remark 3.3. For the relations among weak $D_{i}, i=0,1,2$ we can make a figures coincide with these for weak $T_{i} s$ spaces in [5].
Theorem 3.4. Let ( $X, T$ ) be a topological space:

1. If ( $X, T$ ) is $\omega-T_{i}$, ( resp. $\alpha-\omega-T_{i}$, pre $-\omega-T_{i}, b-\omega-T_{i}, \beta-\omega-T_{i}$, for $i=0,1,2$, and $\omega^{\star}-T_{i}, \alpha-\omega^{\star}-T_{i}$, $\alpha-\omega^{\star \star}-T_{i}$, pre $-\omega^{\star}-T_{i}, \alpha-$ pre $-\omega-T_{i}, b-\omega-T_{i}, \operatorname{pre}-\omega^{\star \star}-T_{i}, b-\omega-T_{i}, b-\omega^{\star}-T_{i}$, pre $-b-\omega-T_{i}$, $\alpha-b-\omega-T_{i}$, pre $-b-\omega-T_{i}, b-\omega^{\star \star}-T_{i}, \beta-\omega^{\star}-T_{i}, \alpha-\beta-\omega-T_{i}$, pre $-\beta-\omega-T_{i}, \beta-\omega^{\star \star}-T_{i}$, and $b-\beta-\omega-T_{i}$ for $i=1,2$ ), then it is $\omega-D_{i}$, ( resp. $\alpha-\omega-D_{i}$, pre $-\omega-D_{i}, b-\omega-D_{i}, \alpha-b-\omega-D_{i}$ ,$\beta-\omega-D_{i}$, for $i=0,1,2$, and pre $-b-\omega-D_{i}, b-\omega^{\star \star}-D_{i}, \quad \omega^{\star}-D_{i}, \alpha-\omega^{\star}-D_{i}, \alpha-\omega^{\star \star}-D_{i}$, pre $-\omega^{\star}-$ $D_{i}, \alpha-$ pre $-\omega-D_{i}$, pre $-\omega^{\star \star}-D_{i}, b-\omega-D_{i}, b-\omega^{\star}-D_{i}$, pre $-b-\omega-D_{i}, \beta-\omega^{\star}-D_{i}, \alpha-\beta-\omega-D_{i}$, pre $-\beta-\omega-D_{i}, \beta-\omega^{\star \star}-D_{i}$, and $b-\beta-\omega-D_{i}$ for $i=1,2$ ).
2. If $(X, T)$ is $\omega-D_{i}$, ( resp. $\alpha-\omega-D_{i}, \omega^{\star}-D_{i}, \alpha-\omega^{\star}-D_{i}, \alpha-\omega^{\star \star}-D_{i}$, pre $-\omega-D_{1 i}$, pre $-\omega^{\star}-D_{i}, \alpha-$ pre $-\omega-D_{i}, b-\omega-D_{i}$, pre $-\omega^{\star \star}-D_{i}, b-\omega-D_{i}, b-\omega^{\star}-D_{i}$, pre $-b-\omega-D_{i}, \alpha-b-\omega-D_{i}$, pre -$b-\omega-D_{i}, b-\omega^{\star \star}-D_{i}, \beta-\omega-D_{i}, \beta-\omega^{\star}-D_{i}, \alpha-\beta-\omega-D_{i}$, pre $\left.-\beta-\omega-D_{i}, \beta-\omega^{\star \star}-D_{i}, b-\beta-\omega-D_{i}\right)$, then it is $\omega-D_{i-1}$, ( resp. $\alpha-\omega-D_{i-1}, \omega^{\star}-D_{i-1}, \alpha-\omega^{\star}-D_{i-1}, \alpha-\omega^{\star \star}-D_{i-1}$, pre $-\omega-D_{i-1}$, pre $-\omega^{\star}-$ $D_{i-1}, \alpha-$ pre $-\omega-D_{i-1}, b-\omega-D_{i-1}$, pre $-\omega^{\star \star}-D_{i-1}, b-\omega-D_{i-1}, b-\omega^{\star}-D_{i-1}$, pre $-b-\omega-D_{i-1}$, $\alpha-b-\omega-D_{i-1}$, pre $-b-\omega-D_{i-1}, b-\omega^{\star \star}-D_{i-1}, \beta-\omega-D_{i-1}, \beta-\omega^{\star}-D_{i-1}, \alpha-\beta-\omega-D_{i-1}$, pre -$\beta-\omega-D_{i-1}, \beta-\omega^{\star \star}-D_{i-1}$, and $\left.b-\beta-\omega-D_{i-1}\right)$, for $i=1,2$.

## Proof:

1. Follows immediately by the Remark 3.3.
2. Directly from Definition 2.1. Definition 3.1, and Definition 3.2.

By the following theorems we recognize the importance of the weak $D_{i}$-spaces, for $i=0,1,2$.
Theorem 3.5. Let ( $X, T$ ) be a topological space. Then $X$ is $\omega-D_{1}$, ( resp. $\alpha-\omega-D_{1}, \omega^{\star}-D_{1}, \alpha-\omega^{\star}-D_{1}$, $\alpha-\omega^{\star \star}-D_{1}$, pre $-\omega-D_{1}$, pre $-\omega^{\star}-D_{1}, \alpha-$ pre $-\omega-D_{1}, b-\omega-D_{1}$, pre $-\omega^{\star \star}-D_{1}, b-\omega-D_{1}, b-\omega^{\star}-$ $D_{1}$, pre $-b-\omega-D_{1}, \alpha-b-\omega-D_{1}$, pre $-b-\omega-D_{1}, b-\omega^{\star \star}-D_{1}, \beta-\omega-D_{1}, \beta-\omega^{\star}-D_{1}, \alpha-\beta-\omega-D_{1}$, pre $\left.-\beta-\omega-D_{1}, \beta-\omega^{\star \star}-D_{1}, b-\beta-\omega-D_{1}\right)$ if and only if it is $\omega-D_{2},\left(\right.$ resp. $\alpha-\omega-D_{2}, \omega^{\star}-D_{2}$, $\alpha-\omega^{\star}-D_{2}, \quad \alpha-\omega^{\star \star}-D_{2}$, pre $-\omega-D_{2}$, pre $-\omega^{\star}-D_{2}, \alpha-$ pre $-\omega-D_{2}, b-\omega-D_{2}$, pre $-\omega^{\star \star}-D_{2}$, $b-\omega-D_{2}, b-\omega^{\star}-D_{2}$, pre $-b-\omega-D_{2}, \alpha-b-\omega-D_{2}$, pre $-b-\omega-D_{2}, b-\omega^{\star \star}-D_{2}, \beta-\omega-D_{2}$, $\beta-\omega^{\star}-D_{2}, \alpha-\beta-\omega-D_{2}$, pre $\left.-\beta-\omega-D_{2}, \beta-\omega^{\star \star}-D_{2}, b-\beta-\omega-D_{2}\right)$.

## Proof:

The proof of the forward direction is a step by step similar to that of Theorem 4.8 in [4].The inverse direction follows immediately from (2) of theorem 3.4 above.

Theorem 3.6. Let ( $X, T$ ), be a topological space. Then $X$ is $\alpha-\omega-T_{0}$ ( resp. $\omega-T_{0}$, pre $-\omega-T_{0}, b-\omega-T_{0}$, $\beta-\omega-T_{0}$ ) if and only if it is $\alpha-\omega-D_{0}$ (resp. $\omega-D_{0}$, pre- $\omega-D_{0}, b-\omega-D_{0}, \beta-\omega-D_{0}$ ).

## Proof:

The forward direction follows immediately from (1). of Theorem 3.4.
For the opposite side let $X$ be $\alpha-\omega-D_{0}$, so for $x \neq y \in X$, there is a $D_{\alpha-\omega}-$ set $U$ such that $x \in U$, but $y \notin U$. Then by the definition of the $D_{\alpha-\omega}-$ set,$U=W \backslash V$, where $V$ and $W \neq X$ are $\alpha-\omega$ - open sets. Now if $x \in W$, but $y \notin W$, and $W$ is an $\alpha-\omega$ - open set in $X$. So $X$ is $\alpha-\omega-T_{0}$. Then whenever $x \in U=W \backslash V$ and $y \in(W \cap V)$. Then $y \in V$, and $x \notin V$. Thus $X$ is $\alpha-\omega-T_{0}$ space.

For the following definition we need the definition of the $\omega$-neighbourhood from [5]:
Definition 3.7.[5] Let ( $X, T$ ) be a topological space. A subset $U$ of $X$ is $\omega$-neighbourhood of a point $x \in X$, if and only if there exists an $\omega$-open set $V$ such that $x \in V \subseteq U$.
Definition 3.8. A point $x \in X$ which has only $X$ as $\omega$-neighbourhood is called an $\omega$-net point.
Proposition 3.9. Let ( $X, T$ ) be a topological space If $X$ is $\omega-D_{1}$ space, then it has no $\omega$-net point.
Proof:
Since $X$ is $\omega-D_{1}$ so each point $x$ of $X$ contained in a $D_{\omega}$-set $W=U \backslash V, U \neq X$, and $U$ and $V$ are $\omega$-open sets. So it contained in the $\omega$-open set $U \neq X$, which implies $x$ is no $\omega$-net point.
Theorem 3.10. Let $X$ be a door topological space, has no $\omega$-net point. Then it is $\omega-D_{1}$ space.

## Proof:

Since ( $X, T$ ) be a door topological space, so for each point $x$ in $X,\{x\}$ is either $\omega$-open or $\omega$-closed. This implies for each $x \neq y \in X$, at least one of them say $x$ has $\omega$-neighbourhood $U \neq X$ containing $x$ but not $y, U$ is $D_{\omega}$-set. If $X$ has no $\omega$-net point, then $y$ is not $\omega$-net point, so there is an $\omega$-neighbourhood $V \neq X$ of $y$. Thus $V \backslash U$ is $D_{\omega}-$ set containing $y$ but not $x$. Hence $X$ is $\omega-D_{1}$ space .

To introduce Theorem 3.12 we need the following Definition from [5]:
Definition 3.11. [5] Let $(\mathrm{X}, \sigma)$ and $(\mathrm{Y}, \tau)$ be two topological spaces. A map $\mathrm{f}:(\mathrm{X}, \sigma) \rightarrow(\mathrm{Y}, \tau)$ is called $\omega$-continuous ( resp. $\alpha-\omega$-continuous, pre $-\omega$-continuous, $b-\omega$-continuous and $\beta-\omega$-continuous ) at $\mathrm{X} \in \mathrm{X}$, if and only if for each $\omega$-open ( resp. $\alpha-\omega$-open, pre $-\omega$-open, b- $\omega$-open and $\beta-\omega$-open ) set V containing $f(x)$, there exists an $\omega$-open ( resp. $\alpha-\omega$-open, pre $-\omega$-open, $b-\omega$-open and $\beta-\omega$-open ) set $U$ containing $x$, such that $\mathrm{f}(\mathrm{U}) \subset \mathrm{V}$. If f is $\omega$-continuous ( resp. $\alpha-\omega$-continuous, pre $-\omega$-continuous, $\mathrm{b}-\omega$ - continuous and $\beta-$ $\omega$-continuous ) at each $x \in X$, we call it $\omega$ - continuous ( resp. $\alpha-\omega$ - continuous, pre $-\omega-$ continuous, b $-\omega-$ continuous and $\beta-\omega$-continuous ).

Theorem 3.12. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega$ - continuous ( resp. $\alpha-\omega$-continuous , pre $-\omega$-continuous, $\beta$ -$\omega$-continuous, $b-\omega$ - continuous ) onto function and $A$ is $D_{\omega}-$ set ( resp. $D_{\alpha-\omega}-$ set, $D_{\text {pre }-\omega}-$ set, $D_{b-\omega}-$ set, $D_{\beta-\omega}-$ set $)$ in $Y$, then $f^{-1}(A)$ is also $D_{\omega}-$ set ( resp. $D_{\alpha-\omega}-$ set, $D_{\text {pre- } \omega}-$ set, $D_{b-\omega}-$ set, $D_{\beta-\omega}-$ set ) in $X$.

## Proof:

Let $A$ be $D_{\omega}-$ set in $Y$, so there are two $\omega$ - open sets $U \neq Y, V$ in $Y$ such that $A=U \backslash V$. Then by the $\omega$-continuous function definition, we have $f^{-1}(U)$ and $f^{-1}(V)$ are $\omega$-open sets in $X$, such that $f^{-1}(U) \neq X$. And $\mathrm{f}^{-1}(\mathrm{~A})=\mathrm{f}^{-1}(\mathrm{U} \backslash \mathrm{V})=\mathrm{f}^{-1}(\mathrm{U}) \backslash \mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{D}_{\omega}-$ set in X .

The other cases are the same .
Theorem 3.13. For any two topological spaces $(X, \tau)$ and $(Y, \sigma)$.

1. If $(Y, \sigma)$ be an $\omega^{\star}-D_{1}$ and $f:(X, \tau) \rightarrow(Y, \sigma)$ is an $\omega$-continuous bijection, then $(X, \tau)$ is $\omega^{\star}-D_{1}$.
2. If $(\mathrm{Y}, \sigma)$ be an, $\alpha-\omega^{\star \star}-\mathrm{D}_{1}$ and $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is an $\alpha-\omega$-continuous bijection, then $(\mathrm{X}, \tau)$ is, $\alpha-\omega^{\star \star}-\mathrm{D}_{1}$.
3. If $(Y, \sigma)$ be $a$, pre $-\omega^{\star \star}-D_{1}$ and $f:(X, \tau) \rightarrow(Y, \sigma)$ is a pre $-\omega$-continuous bijection, then $(X, \tau)$ is pre $-\omega^{\star \star}-D_{1}$.
4. If $(\mathrm{Y}, \sigma)$ be $\mathrm{a}, \mathrm{b}-\omega^{\star \star}-\mathrm{D}_{1}$ and $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\mathrm{ab}-\omega$-continuous bijection, then $(\mathrm{X}, \tau)$ is $\mathrm{b}-\omega^{\star \star}-\mathrm{D}_{1}$.
5. If $(\mathrm{Y}, \sigma)$ be a, $\beta-\omega^{\star \star}-\mathrm{D}_{1}$ and $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is a $\beta-\omega$-continuous bijection, then $(\mathrm{X}, \tau)$ is $\beta-\omega^{\star \star}-\mathrm{D}_{1}$.

Proof of (1):

Let $Y$ be an $\omega^{\star}-D_{1}$ space. Let $x \neq y \in X$, since $f$ is bijective and $Y$ is $\omega^{\star}-D_{1}$ space, so there exist two $D_{\omega}$-sets $U$ and $V$ such that $U$ containing $f(x)$ but not $f(y)$ and $V$ containing $f(y)$ but not $f(x)$, then by Theorem 3.12. $f^{-1}(U)$ and $f^{-1}(V)$ are $D_{\omega}$-sets such that $f^{-1}(U)$ containing $x$ but not $y$ and $f^{-1}(V)$ containing $y$ but not $x$. So (X, $\tau$ ) is $\omega^{\star}-D_{1}$.

## By the same way we can prove the other cases .

Theorem 3.14. A topological space ( $\mathrm{X}, \mathrm{T}$ ) is $\omega^{\star}-D_{1}$ ( resp. $\alpha-\omega^{\star \star}-D_{1}$, pre $-\omega^{\star \star}-D_{1}$, , $b-\omega^{\star \star}-D_{1}$, $\beta-\omega^{\star \star}-D_{1}$ ) if and only if for each pair of distinct points $x, y \in X$, there exists an $\omega$-continuous ( resp. $\alpha-$ $\omega$-continuous, pre $-\omega$-continuous, $\mathrm{b}-\omega$-continuous, $\beta-\omega$-continuous ) onto function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ such that $f(x)$ and $f(y)$ are distinct, where $(Y, \sigma)$ is $\omega^{\star}-D_{1}\left(\operatorname{resp} . \alpha-\omega^{\star \star}-D_{1}\right.$, pre $\left.-\omega^{\star \star}-D_{1}, b-\omega^{\star \star}-D_{1}, \beta-\omega^{\star \star}-D_{1}\right)$ space.

## Proof:

Let $(X, \tau)$ be an $\omega^{\star}-D_{1}$, let $x, y \in X$, then we can find an onto function $f:(X, \tau) \rightarrow(Y, \sigma)$, where $(Y, \sigma)$ is an $\omega^{\star}-D_{1}$ is defined by $f(x)=x$, such that $f(x)$ and $f(y)$ distinct. For the opposite direction. Let $x \neq y \in X$, and $f:(X, \tau) \rightarrow(Y, \sigma)$ be an onto $\omega$-continuous function such that $f(x)$ and $f(y)$ distinct, and $(Y, \sigma)$ is $\omega^{\star}-D_{1}$ space. We must prove $(X, \tau)$ is $\omega^{\star}-D_{1}$ space. Since $(Y, \sigma)$ is an $\omega^{\star}-D_{1}$ space and $f(x)$ and $f(y)$ are distinct points in it, then by Theorem 3.5 there are two distinct disjoint $D_{\omega}-$ sets $U$ and $V$ in $Y$ such that $U$ containing $f(x)$ and $V$ containing $f(y)$. Then since $f$ is $\omega$-continuous function so $f^{-1}(U)$ and $f^{-1}(V)$ are two disjoint $D_{\omega}$-sets in $X$ such that $f^{-1}(\mathrm{U})$ containing $x$ and $\mathrm{f}^{-1}(\mathrm{~V})$ containing y . $\mathrm{So}(X, T)$ is $\omega^{\star}-D_{2}$, and by Theorem 3.5. again, we get $(X, T)$ is $\omega^{\star}-D_{1}$ space.

## 4. REFERENCES

[1]. A. Al-Omari and M. S. M. Noorani, " Regular generalized $\omega$-closed sets", Internat. J. Math. Math. Sci., vo. 2007. Article ID 16292, doi: 10.1155/2007/16292, 11 pages, 2007.
[2]. Luay. A. Al Swidi, Mustafa. H. Hadi," Characterizations of Continuity and Compactness with Respect to Weak Forms of $\omega$-Open Sets ", European Journal of Scientific Research,Vol.57, No.4, pp.577-582, 2011.
[3]. D. Andrijevic, " On b-open sets" , Mat. Vesnik 48 ,pp. 59-64, 1996.
[4]. S. Athisaya and M. Lellis, " Another form of separation axioms", Methods of Functional Analysis and Topolog,. vol.13,no.4,pp. 380-385,2007.
[5]. M. H. Hadi, " Weak forms of $\omega$-open sets and decomposition of separation axioms" , M. Sc. Thesis, Babylon University (2011).
[6]. H. Z. Hdeib, " $\omega$-closed mappings", Rev. Colomb. Maht,vol.16,no. 3-4, pp. 65-78, 1982.
[7]. H. Z. Hdeib, " $\omega$-continuous functions", Dirasat, vol. 16, no.2, pp. 136-142 1989.
[8]. A. S. Mashhour, M. E. Abd El- Monsef and S. N. El- Deeb, " On pre-continuous and weak pre-continuous functions ' , Proc. Math. Phys. Soc. Egypt, no. 51, pp. 47-53, 1982.
[9]. O. Njastad, " On some classes of nearly open sets ", Pacific. J. Math. 15, pp. 961-970, 1965.
[10]. T. Noiri, A. Al-Omari and M. S. M. Noorani, " Weak forms of $\omega$-open sets and decomposition of continuity", E.J.P.A.M. vol. 2 , no. 1, pp. 73-84, 2009.

