Some Fixed Point Theorems for Generalized Contractive Mappings in Complete 2 -Metric Spaces

B. Baskaran ${ }^{1}$ and C. Rajesh ${ }^{2, *}$
${ }^{1}$ Department of Mathematics Faculty of Engineering and Technology, SRM University, Vadapalani Campus, Chennai- 600 026, Tamil Nadu, India,
${ }^{2}$ Department of Mathematics Faculty of Engineering and Technology, SRM University, Vadapalani Campus, Chennai- 600 026, Tamil Nadu, India,
*Corresponding author's email: rajesh_chinniah [AT] yahoo.com

Abstract

In this paper we introduce new concepts of Ciric type and JS type - contraction and established some fixed point theorems for such contraction in complete 2 - metric spaces.

Keywords-Fixed Point, Ciric type contraction, JS type contraction, Complete 2-metric space.

1. INTRODUCTION

The Banach contraction principle is the first important result on fixed points for contractive-type mappings, many authors have obtained interesting extensions and generalizations of the Banach contraction principle. The concept of Ciric contraction and JS-contraction have been introduced, respectively, by Ciric [6] and Hussain et al.[4]. In this paper we introduced Ciric type and JS type - contraction and established some fixed point theorems for such contraction in complete 2 - metric spaces.

2. PRELIMINARIES

Definition 2.1.([2, 3, 17])

A 2-metric space is a set X with a real valued non -negative function is defined on $\mathrm{X} \times \mathrm{X} \times \mathrm{X}$ such that
(i) for all $x, y \in X,(x \neq y)$, there exists a point $z \in X$ such that $\sigma(x, y, z) \neq 0$
(ii) $\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ if at least two of points $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coincide.
(iii) $\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sigma(\mathrm{x}, \mathrm{z}, \mathrm{y})=\sigma(\mathrm{y}, \mathrm{z}, \mathrm{x})=\sigma(\mathrm{y}, \mathrm{x}, \mathrm{z})$
(iv) $\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leq \sigma(\mathrm{x}, \mathrm{y}, \mathrm{w})+\sigma(\mathrm{x}, \mathrm{w}, \mathrm{z})+\sigma(\mathrm{w}, \mathrm{y}, \mathrm{z})$

The function σ is called 2-metric for the space and (X, σ) is called a 2-metric space.
Definition 2.2 : ([6, 7])
Let (X, σ) be a $2-$ metric space. A mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ is said to be Ciric type contraction.
If there exist non negative numbers a, b, c, d with $0 \leq a+2 d<1,0 \leq b<1,0 \leq c+d<1$, Such that $\sigma(T x, T y, z) \leq a \sigma(x, y, z)+b \sigma(x, T x, z)+c \sigma(y, T y, z)+d[\sigma(x, T y, z)+\sigma(y, T x, z)]$ for all $x, y, z \in X$,

Definition 2.3 : ([8])
Let $(\mathrm{X}, \sigma$) be a $2-$ metric space. A mapping T : X $\rightarrow \mathrm{X}$ is said to be JS type contraction.
If there exist $\psi \in \Psi$ and non-negative numbers. a, b, c, d with $0 \leq a+2 d<1,0 \leq b<1,0 \leq c+d<1$, Such that $\psi[\sigma(\mathrm{Tx}, \mathrm{Ty}, \mathrm{z})] \leq[\psi(\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z}))]^{\mathrm{a}}[\psi(\sigma(\mathrm{x}, \mathrm{Tx}, \mathrm{z}))]^{\mathrm{b}}[\psi(\sigma(\mathrm{y}, \mathrm{Ty}, \mathrm{z}))]^{\mathrm{c}}[\psi(\sigma(\mathrm{x}, \mathrm{Ty}, \mathrm{z})+\sigma(\mathrm{y}, \mathrm{Tx}, \mathrm{z}))]^{\mathrm{d}}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, Where Ψ is the set of all functions $\psi:[0, \infty) \rightarrow[1, \infty)$ satisfying the following conditions:
$\left(\psi_{1}\right) \quad \psi$ is non-decreasing, and $\psi(t)=1$ if and only if $t=0 ;$
$\left(\psi_{2}\right) \quad$ for each sequence $\left\{\mathrm{t}_{\mathrm{n}}\right\} \subset(0, \infty), \underset{n \rightarrow \infty}{\operatorname{Lim}} \psi\left(t_{n}\right)=1$ if and only if $\underset{n \rightarrow \infty}{\operatorname{Lim}} t_{n}=0$;
$\left(\psi_{3}\right) \quad$ there exist $r \in(0,1)$ and $\ell \in(0, \infty]$ such that $\operatorname{Lim}_{t \rightarrow 0^{+}} \frac{\psi(t)-1}{t^{r}}=\ell$;
$\left(\psi_{4}\right) \quad \psi(\mathrm{a}+\mathrm{b}+\mathrm{c}) \leq \psi(\mathrm{a}) \psi(\mathrm{b}) \psi(\mathrm{c})$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}>0$.
Definition 2.4 : ([17])
A sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy sequence if for each $z \in X$,
$\lim _{m, n \rightarrow \infty} \sigma\left(x_{n,} x_{m}, z\right)=0$
A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X is convergent to an element $\mathrm{x} \in \mathrm{X}$ if for each $\mathrm{z} \in \mathrm{X}$,
$\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x, z\right)=0$
A complete 2 - metric space is one in which every Cauchy sequence in X converges to an element of X .
Definition 2.5. ([3])
A mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ of a 2-metric space (X, σ) in to itself is said to be asymptotically regular at a point $x \in X$
if $\lim _{n \rightarrow \infty} \sigma\left(T^{n} x, T^{n+1} x, z\right)=0, \quad(z \in X)$.

3. MAIN RESULTS

We first introduce a new 2-metric ρ in a given 2-metric space (X, σ) induced by the metric σ,
Define, [11], $\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})=\eta(\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z}))=\ln (\psi[\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z})])$
For $\psi \in \Psi$ and $t \in[0, \infty)$, set $\eta(t)=\ln (\psi(t))$. Then $\eta:[0, \infty) \rightarrow[0, \infty)$ has the following properties:
$\left(\eta_{1}\right) \quad \eta$ is non-decreasing, and $\eta(t)=0$ if and only if $t=0$;
$\left(\eta_{2}\right) \quad$ for each sequence $\left\{\mathrm{t}_{\mathrm{n}}\right\} \subset(0, \infty), \operatorname{Lim}_{n \rightarrow \infty} \eta\left(t_{n}\right)=0$ if and only if $\underset{n \rightarrow \infty}{\operatorname{Lim}} t_{n}=0$;
$\left(\eta_{3}\right) \quad \eta(a+b+c) \leq \eta(a) \eta(b) \eta(c)$ for all $a, b, c>0$.
Lemma 3.1: [11] Let (X, σ) be a 2-metric space then (X, ρ) is a 2 -metric space, where $\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})=\eta(\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z}))=\ln (\psi[\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z})])$.
Proof: For each $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$. we have
$\sigma(x, y, z)=0$ if at least two of points x, y, z coincide
this imply $\eta(\sigma(x, y, z))=0$ if at least two of points x, y, z coincide, by $\left(\eta_{1}\right)$
Hence
(i) $\rho(x, y, z)=\eta(\sigma(x, y, z))=0$; if at least two of points x, y, z coincide,
(ii) $\quad \rho(x, y, z)=\eta(\sigma(x, y, z))=\eta(\sigma(x, z, y)=\rho(x, z, y) ;$ similarly we get $\rho(x, y, z)=\rho(x, z, y)=\rho(y, x, z)=\rho(y, z, x)=\ldots \ldots$
(iii) $\quad \rho(\mathrm{x}, \mathrm{y}, \mathrm{z})=\eta(\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z}))$

$$
\begin{aligned}
& \leq \eta(\sigma(x, y, w)+\sigma(x, w, z)+(\sigma(w, y, z)) \\
& \leq \eta(\sigma(x, y, w))+\eta(\sigma(x, w, z))+\eta(\sigma(w, y, z)) \\
& \leq \rho(x, y, w)+\rho(x, w, z)+\rho(w, y, z)
\end{aligned}
$$

Hence (X, ρ) is a 2 -metric space.
Lemma 3.2: Let $(\mathrm{X}, \sigma$) be a 2-metric space with $\psi \in \Psi$ then (X, ρ) is complete if and only if (X, σ) is complete.
where $\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})=\eta(\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z}))=\ln (\psi[\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z})])$.
Proof:
Suppose that (X, σ) is complete and $\left\{\mathrm{X}_{n}\right\}$ is a Cauchy sequence of (X, σ).
i.e $\underset{m, n \rightarrow \infty}{\operatorname{Lim}} \rho\left(x_{n}, x_{m}, z\right)=0$. then we have $\underset{m, n \rightarrow \infty}{\operatorname{Lim}} \eta\left(\sigma\left(x_{n}, x_{m}, z\right)\right)=0$.
and hence $\underset{m, n \rightarrow \infty}{\operatorname{Lim}} \sigma\left(x_{n}, x_{m}, z\right)=0$ by $\left(\eta_{2}\right)$.

More over by completeness of (X, σ) there exists x in X such that $\underset{n \rightarrow \infty}{\operatorname{Lim}} \sigma\left(x_{n}, x, z\right)=0$ and so
$\operatorname{Lim}_{n \rightarrow \infty} \rho\left(x_{n}, x, z\right)=\operatorname{Lim}_{n \rightarrow \infty} \eta\left(\sigma\left(x_{n}, x, z\right)\right)=0$ by $\left(\eta_{2}\right)$.
Hence (X, ρ) is complete.
Similarly we can prove if (X, ρ) is complete then (X, σ) is complete.
Hence the proof.
Lemma 3.3: Let (X, σ) be a 2-metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a JS type contraction with $\psi \in \Psi$ then T is a Ciric type contraction in (X, ρ).
Proof: For all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in X
$\rho(T x, T y, z)=\eta(\sigma(T x, T y, z))=\ln (\psi[\sigma(T x, T y, z)])$

$$
\begin{aligned}
& \leq \ln \left\{[\psi(\sigma(x, y, z))]^{\mathrm{a}}[\psi(\sigma(\mathrm{x}, \mathrm{Tx}, \mathrm{z}))]^{\mathrm{b}}[\psi(\sigma(\mathrm{y}, \mathrm{Ty}, \mathrm{z}))]^{\mathrm{c}}[\psi(\sigma(\mathrm{x}, \mathrm{Ty}, \mathrm{z})+\sigma(\mathrm{y}, \mathrm{Tx}, \mathrm{z}))]^{\mathrm{d}}\right\} \\
& \leq \mathrm{a} \ln [\psi(\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z}))]+\mathrm{b} \ln [\psi(\sigma(\mathrm{x}, \mathrm{Tx}, \mathrm{z}))]+\mathrm{c} \ln [\psi(\sigma(\mathrm{y}, \mathrm{Ty}, \mathrm{z}))]+\mathrm{d}[\ln (\psi(\sigma(\mathrm{x}, \mathrm{Ty}, \mathrm{z}))+\ln (\psi \sigma(\mathrm{y}, \mathrm{Tx}, \mathrm{z}))] \\
& \leq \text { a } \rho(\mathrm{x}, \mathrm{y}, \mathrm{z})+\mathrm{b} \rho(\mathrm{x}, \mathrm{Tx}, \mathrm{z})+\mathrm{c} \rho(\mathrm{y}, \mathrm{Ty}, \mathrm{z})+\mathrm{d}[\rho(\mathrm{x}, \mathrm{Ty}, \mathrm{z})+\rho(\mathrm{y}, \mathrm{Tx}, \mathrm{z})] \text { for all } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}
\end{aligned}
$$

that is, (1) is satisfied with respect to the metric ρ, and hence T is a Ciric type contraction in (X, ρ).

Theorem 3.4

Let (X, σ) be a complete 2 -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping such that the following condition is satisfied.

$$
\begin{gather*}
\sigma(T x, T y, z) \leq a \sigma(x, y, z)+b \sigma(x, T x, z)+c \sigma(y, T y, z)+d[\sigma(x, T y, z)+\sigma(y, T x, z)] \text { for all } x, y, z \in X, \\
0 \leq a+2 d<1,0 \leq b<1,0 \leq c+d<1 \tag{3}
\end{gather*}
$$

If T is asymptotically regular at some point of X , then T has a unique fixed point in X .
Proof: We shall assume that T is asymptotically regular at a point $\mathrm{x} \in \mathrm{X}$ and consider the sequence $\left\{\mathrm{T}^{\mathrm{n}} \mathrm{x}\right\}$. Then $\sigma\left(T^{m} x, T^{n} x, z\right) \leq a \sigma\left(T^{m-1} x, T^{n-1} x, z\right)+b \sigma\left(T^{m-1} x, T^{m} x, z\right)+c \sigma\left(T^{n-1} x, T^{n} x, z\right)+d\left[\sigma\left(T^{m-1} x, T^{n} x, z\right)+\sigma\left(T^{n-1} x, T^{m} x, z\right)\right]$

$$
\begin{aligned}
& \leq \mathrm{a}\left[\sigma\left(\mathrm{~T}^{\mathrm{m}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}\right)+\sigma\left(\mathrm{T}^{\mathrm{m}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)+\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{z}\right)\right]+\mathrm{b} \sigma\left(\mathrm{~T}^{\mathrm{m}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{m}} \mathrm{x}, \mathrm{z}\right)+\mathrm{c} \sigma\left(\mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right) \\
& +d\left[\sigma\left(T^{m-1} x, T^{n} x, T^{m} x\right)+\sigma\left(T^{m-1} x, T^{m} x, z\right)+\sigma\left(T^{m} x, T^{n} x, z\right)+\sigma\left(T^{n-1} x, T^{m} x, T^{n} x\right)+\sigma\left(T^{n-1} x, T^{n} x, z\right)\right. \\
& \left.+\sigma\left(T^{n} x, T^{m} x, z\right)\right] \\
& \leq \mathrm{a}\left[\sigma\left(\mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{m}-1} \mathrm{x}\right)+\sigma\left(\mathrm{T}^{\mathrm{m}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{~T}^{\mathrm{m}} \mathrm{x}\right)+\sigma\left(\mathrm{T}^{\mathrm{m}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{m}} \mathrm{x}, \mathrm{z}\right)+\sigma\left(\mathrm{T}^{\mathrm{m}} \mathrm{x}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)+\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{z}\right)\right] \\
& +b \sigma\left(T^{m-1} x, T^{m} x, z\right)+c \sigma\left(T^{n-1} x, T^{n} x, z\right)+d\left[\sigma\left(T^{m-1} x, T^{n} x, T^{m} x\right)+\sigma\left(T^{m-1} x, T^{m} x, z\right)\right. \\
& \left.+\sigma\left(T^{m} x, T^{n} x, z\right)+\sigma\left(T^{n-1} x, T^{m} x, T^{n} x\right)+\sigma\left(T^{n-1} x, T^{n} x, z\right)+\sigma\left(T^{m} x, T^{n} x, z\right)\right]
\end{aligned}
$$

$(1-\mathrm{a}-2 \mathrm{~d}) \sigma\left(\mathrm{T}^{\mathrm{m}} \mathrm{x}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right) \leq(2 \mathrm{a}+\mathrm{b}+2 \mathrm{~d}) \sigma\left(\mathrm{T}^{\mathrm{m}-1} \mathrm{x}, \mathrm{T}^{\mathrm{m}} \mathrm{x}, \mathrm{z}\right)+(2 \mathrm{a}+\mathrm{c}+2 \mathrm{~d}) \sigma\left(\mathrm{T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)$
$\sigma\left(\mathrm{T}^{\mathrm{m}} \mathrm{x}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right) \leq \frac{(2 a+b+2 d)}{(1-a-2 d)} \sigma\left(\mathrm{T}^{\mathrm{m}-1} \mathrm{x}, \mathrm{T}^{\mathrm{m}} \mathrm{x}, \mathrm{z}\right)+\frac{(2 a+c+2 d)}{(1-a-2 d)} \sigma\left(\mathrm{T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)$
Since T is asymptotically regular at x.
$\sigma\left(\mathrm{T}^{\mathrm{m}} \mathrm{x}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right) \rightarrow 0$ as $\mathrm{m}, \mathrm{n} \rightarrow \infty$;
Hence $\left\{\mathrm{T}^{\mathrm{n}} \mathrm{x}\right\}$ is a Cauchy sequence.
Since (X, σ) is complete, there exist a point u in X such that $\underset{n \rightarrow \infty}{\operatorname{Lim}} T^{n} x=u$.
Suppose that u is not a fixed point of T
Then by (3), we obtain
$\sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z}) \leq \sigma\left(\mathrm{u}, \mathrm{Tu}, \mathrm{T}^{\mathrm{n}} \mathrm{x}\right)+\sigma\left(\mathrm{u}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)+\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{Tu}, \mathrm{z}\right)$

$$
\begin{aligned}
& \leq \sigma\left(\mathrm{u}, \mathrm{Tu}, \mathrm{~T}^{\mathrm{n} x} \mathrm{x}\right)+\sigma\left(\mathrm{u}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)+\mathrm{a} \sigma\left(\mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{u}, \mathrm{z}\right)+\mathrm{b} \sigma\left(\mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)+\mathrm{c} \sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z}) \\
& \quad \quad+\mathrm{d}\left[\sigma\left(\mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{Tu}, \mathrm{z}\right)+\sigma\left(\mathrm{u}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right] \\
& \quad(1+\mathrm{d}) \sigma\left(\mathrm{u}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)+\mathrm{a} \sigma\left(\mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{u}, \mathrm{z}\right)+\mathrm{b} \sigma\left(\mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)+\mathrm{c} \sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z})+\mathrm{d}\left[\sigma\left(\mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{Tu}, \mathrm{z}\right)+\sigma\left(\mathrm{u}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right]
\end{aligned}
$$

Taking the limit as $\mathrm{n} \rightarrow \infty$, we obtain $\sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z}) \leq(\mathrm{c}+\mathrm{d}) \sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z})$
Which contradicts $(c+d)<1$ unless $u=T u$,
Suppose T has second fixed point v in X . Then by (3),
We obtain $\sigma(\mathrm{u}, \mathrm{v}, \mathrm{z}) \leq(\mathrm{a}+2 \mathrm{~d}) \sigma(\mathrm{u}, \mathrm{v}, \mathrm{z})$
Since $(a+2 d)<1$ it follows that $u=v$.
Hence the fixed point is unique.
Theorem 3.5 [14]

Let (X, σ) be a complete 2-metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a JS type contraction then T has a unique fixed point. Proof:

Let x in X be an arbitrary point in X, for some $n \in \mathbb{N}$, we have $T^{n} x=T^{n+1} x$ then $T^{n} x$ will be a fixed point of T.
So, without loss of generality, we can suppose that $\sigma\left(T^{n}, T^{n+1} x, u\right)>0$ for all $n \in \mathbb{N}$
Then by (2), we obtain
$\psi\left[\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right]$
$\leq\left[\psi\left(\sigma\left(\mathrm{T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right)\right]^{\mathrm{a}}\left[\psi\left(\sigma\left(\mathrm{T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right)\right]^{\mathrm{b}}\left[\psi\left(\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right)\right]^{\mathrm{c}}\left[\psi\left(\sigma\left(\mathrm{T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)+\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right)\right]^{\mathrm{d}}$
$\leq\left[\psi\left(\sigma\left(T^{n-1} x, T^{n} x, z\right)\right)\right]^{a}\left[\psi\left(\sigma\left(T^{n-1} x, T^{n} x, z\right)\right)\right]^{b}\left[\psi\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)\right)\right]^{c}\left[\psi\left(\sigma\left(T^{n-1} x, T^{n+1} x, T^{n} x\right)+\sigma\left(T^{n-1} x, T^{n} x, z\right)\right.\right.$ $\left.\left.+\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right)\right]^{\mathrm{d}}$
$\leq\left[\psi\left(\sigma\left(\mathrm{T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right)\right]^{\mathrm{a}+\mathrm{b}+2 \mathrm{~d}}\left[\psi\left(\sigma\left(\mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right)\right]^{\mathrm{c}+\mathrm{d}}$
$\psi\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)\right) \leq\left[\psi\left(\sigma\left(T^{n-1} x, T^{n} x, z\right)\right)\right]^{\frac{a+b+2 d}{1-c-d}}, \forall \mathrm{n} \in \mathbb{N}$
$\psi\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)\right) \leq\left[\psi\left(\sigma\left(T^{n-1} x, T^{n} x, z\right)\right)\right]^{\frac{a+b+2 d}{1-c-d}} \ldots \ldots . . \leq .[\psi(\sigma(x, T x, z))]^{\left(\frac{a+b+2 d}{1-c-d}\right)^{n}}$
Letting $\mathrm{n} \rightarrow \infty$ in (4), we obtain
$\psi\left[\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right] \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$
which implies from $\left(\psi_{2}\right)$ that $\underset{n \rightarrow \infty}{\operatorname{Lim}} \sigma\left(T^{n} x, T^{n+1} x, z\right)=0$
From condition $\left(\psi_{3}\right), \exists \mathrm{r} \in(0,1)$ and $\ell \in(0, \infty]$ such that $\operatorname{Lim}_{n \rightarrow \infty} \frac{\psi\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)-1\right.}{\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)\right)^{r}}=\ell$;
Suppose that $\ell<\infty$. In this case, let $\mathrm{B}=\ell / 2>0$.
From the definition of the limit, there exists $\mathrm{n}_{0} \in \mathbb{N}$, such that

$$
\begin{aligned}
& \left|\frac{\psi\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)-1\right.}{\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)\right)^{r}}-\ell\right| \leq B, \text { for all } \mathrm{n} \geq \mathrm{n}_{0} \\
& \quad \Rightarrow \quad \frac{\psi\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)-1\right.}{\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)\right)^{r}} \geq \ell-B=B
\end{aligned}
$$

then $\mathrm{n}\left[\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right]^{\mathrm{r}} \leq \mathrm{nA}\left[\psi\left(\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right)-1\right]$, where $\mathrm{A}=1 / \mathrm{B}$.
Suppose now that $\ell=\infty$, let $\mathrm{B}>0$ be an arbitrary positive number.
From the definition of the limit, there exists $n_{0} \in \mathbb{N}$, such that

$$
\begin{aligned}
& \frac{\psi\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)-1\right.}{\left(\sigma\left(T^{n} x, T^{n+1} x, z\right)\right)^{r}} \geq B, \\
& \Rightarrow \quad \mathrm{n}\left[\sigma\left(\mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{~T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right]^{\mathrm{r}} \leq \mathrm{nA}\left[\psi\left(\sigma\left(\mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{~T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right)-1\right], \text { where } \mathrm{A}=1 / \mathrm{B}, \text { for all } \mathrm{n} \geq \mathrm{n}_{0} .
\end{aligned}
$$

Thus in all cases $\exists \mathrm{A}>0$ and $\mathrm{n}_{0} \in \mathbb{N}$ such that
$\mathrm{n}\left[\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right]^{\mathrm{r}} \leq \mathrm{nA}\left[\psi\left(\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{n}+1} \mathrm{x}, \mathrm{z}\right)\right)-1\right], \quad$ for all $\mathrm{n} \geq \mathrm{n}_{0}$.
Using (4), we obtain
$\mathrm{n}\left[\sigma\left(\mathrm{T}^{\mathrm{n}} x, T^{n+1} x, z\right)\right]^{r} \leq n A\left(\left[\psi(\sigma(x, T x, z)]^{\left(\frac{a+b+2 d}{1-c-d}\right)^{n}}-1\right)\right.$
Letting $\mathrm{n} \rightarrow \infty$, in (6), we obtain $\underset{n \rightarrow \infty}{\operatorname{Lim}} n\left[\sigma\left(T^{n} x, T^{n+1} x, z\right)\right]^{r}=0$. Thus, there exists $\mathrm{n}_{1} \in \mathbb{N}$ such that $\sigma\left(T_{x, T}^{n+1} x, z\right) \leq\left(\frac{1}{n}(1 / r)\right)$ for all $\mathrm{n} \geq \mathrm{n}_{1}$.

Now for $\mathrm{m}>\mathrm{n}>\mathrm{n}_{1}$, we have
$\sigma\left(T^{n} x, T^{m} x, z\right) \leq \sum_{i=n}^{m-1} \sigma\left(T^{i} x, T^{i+1} x, z\right) \leq \sum_{i=n}^{m-1} \frac{1}{(i)^{\frac{1}{r}}}$,

Since $0<\mathrm{r}<1$ then $\sum_{i=n}^{m-1} \frac{1}{(i)^{\frac{1}{r}}}$ converges and hence $\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{T}^{\mathrm{m}} \mathrm{x}, \mathrm{z}\right) \rightarrow 0$ as $\mathrm{m}, \mathrm{n} \rightarrow \infty$.
Thus $\left\{\mathrm{T}^{\mathrm{n}} \mathrm{x}\right\}$ is a Cauchy sequence.
Since (X, σ) is complete, there exist a point $\mathrm{u} \in \mathrm{X}$ such that $\underset{n \rightarrow \infty}{\operatorname{Lim}} T^{n} x=u$.
Suppose that u is not a fixed point of T
Then by (2), we obtain
$\psi(\sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z})) \leq \psi\left[\sigma\left(\mathrm{u}, \mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)+\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{Tu}, \mathrm{z}\right)+\sigma\left(\mathrm{u}, \mathrm{Tu}, \mathrm{T}^{\mathrm{n}} \mathrm{x}\right)\right]$

$$
\begin{aligned}
& \leq \psi\left(\sigma\left(\mathrm{u}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right) \psi\left(\sigma\left(\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{Tu}, \mathrm{z}\right)\right) \psi\left(\sigma\left(\mathrm{u}, \mathrm{Tu}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}\right)\right) \\
& \leq \psi\left(\sigma\left(\mathrm{u}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right) \psi\left(\sigma\left(\mathrm{u}, \mathrm{Tu}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}\right)\right)\left[\psi\left(\sigma\left(\mathrm{T}^{\mathrm{n}-\mathrm{x}} \mathrm{x}, \mathrm{u}, \mathrm{z}\right)\right)\right]^{\mathrm{a}}\left[\psi\left(\sigma\left(\mathrm{~T}^{\mathrm{n}-1} \mathrm{x}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right)\right]^{\mathrm{b}}[\psi(\sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z}))]^{\mathrm{c}} \\
& \quad\left[\psi\left(\sigma\left(\mathrm{~T}^{\mathrm{n}-\mathrm{x}} \mathrm{x}, \mathrm{Tu}, \mathrm{z}\right)+\sigma\left(\mathrm{u}, \mathrm{~T}^{\mathrm{n}} \mathrm{x}, \mathrm{z}\right)\right]^{\mathrm{d}}\right.
\end{aligned}
$$

Taking limit as $\mathrm{n} \rightarrow \infty$
$\psi(\sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z})) \leq[\psi(\sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z}))]^{\mathrm{c}+\mathrm{d}}$.
which is contradiction, since $0 \leq \mathrm{c}+\mathrm{d}<1 . \Rightarrow \sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z})=0$.
i.e $\mathrm{Tu}=\mathrm{u}$.

Suppose T has second fixed point v in X then by (2), we obtain
$\psi(\sigma(\mathrm{u}, \mathrm{v}, \mathrm{z}))$
$=\psi(\sigma(\mathrm{Tu}, \mathrm{Tv}, \mathrm{z}))$
$\leq[\psi(\sigma(\mathrm{u}, \mathrm{v}, \mathrm{z}))]^{\mathrm{a}}[\psi(\sigma(\mathrm{u}, \mathrm{Tu}, \mathrm{z}))]^{\mathrm{b}}[\psi(\sigma(\mathrm{v}, \mathrm{Tv}, \mathrm{z}))]^{\mathrm{c}}[\psi(\sigma(\mathrm{u}, \mathrm{Tv}, \mathrm{z})+\sigma(\mathrm{v}, \mathrm{Tu}, \mathrm{z}))]^{\mathrm{d}}$
$\leq[\psi(\sigma(u, v, z))]^{a+2 d}$.
which is contradiction, since $0 \leq \mathrm{a}+2 \mathrm{~d}<1 . \Rightarrow \sigma(\mathrm{u}, \mathrm{v}, \mathrm{z})=0$.
It follows that $\mathrm{u}=\mathrm{v}$.
Hence the fixed point is unique.

Theorem 3.6

Let (X, σ) be a complete 2-metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a JS type contraction. If T is asymptotically regular at some point of X, then T has a unique fixed point in X.

Proof:

Since (X, σ) is Complete 2-metric space. (X, ρ) is also a Complete 2-metric space by Lemma3.1 and Lemma 3.2: Also T is a Ciric type contraction in (X, ρ) by Lemma 3.3,
Therefore T has a unique fixed point in X by Theorem 3.4:, The proof is complete.

4. REFERENCES

[1] Kannan, R: Some results on fixed points, Bull. Calcutta. Math. Soc., 60, pp.71-76. 1968
[2] Baskaran. B and Rajesh. C, Fixed point theorems in complete 2 - metric spaces by using a continuous control function, Global Journal of Pure and Applied Mathematics, vol. 12, no. 2, pp. 25 - 28, 2016
[3] Baskaran. B and Rajesh. C, Some Results on Fixed points of Asymptotically Regular Mappings, International Journal of Mathematical Analysis, vol. 8, no. 50, pp.2469-2474. 2014
[4] Hussain, N, Parvaneh,V ,Samet,B, Vetro,C: Some fixed point theorems for generalized contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2015, 185, 2015
[5] Reich,S: Some remarks concerning contraction mappings. Can.Math.Bull. 14, pp.121-124, 1971
[6] 'Ciri'c, L: Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Belgr.)12 (26), pp.19-26, 1971.
[7] 'Ciri'c, L: A generalization of Banach's contraction principle. Proc. Am. Math. Soc. 45(2), pp.267-273, 1974.
[8] Jleli,M, Samet,B:A new generalization of the Banach contraction principle J.Inequal. Appl. 2014, 38, 2014.
[9] Aydi, H, Karapinar,E, Samet,B: Remarks on some recent fixed point theorems. Fixed Point Theory Appl. 76 2012.
[10] Aydi,H, Karapinar,E, Samet,B: Fixed points for generalized (α, ψ)-contractions on generalized metric spaces. J.Inequal.Appl. 2014, 229, 2014
[11] Shujun Jiang, Zhilong Li, BoškoDamjanovi'c: A note on 'Some fixed point theorems for generalized contractive mappings in complete metric spaces' Fixed Point Theory Appl. 62, 2016
[12] Wardowski,D: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 94, 2012.
[13] Suzuki,T: A new type of fixed point theorem in metric spaces. Nonlinear Anal. Theory Methods Appl. 71(11), pp.5313-5317, 2009
[14]Hussain,N, Đori'c, D, Kadelburg,Z ,Radenovi'c,S: Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 126, 2012.
[15] Jaggi,D S: Some unique fixed point theorems. Indian J. Pure Appl. Math. 8(2), pp.223-230, 1977
[16] Sehie Park, A unified approach to fixed points of contractive maps, J Korean Math. Soc. 16(2),,pp.95-105, 1980.
[17] Rajesh. C and Baskaran. B, Generalization of common fixed point theorems for weakly commuting maps in complete 2 - metric spaces, Global Journal of Pure and Applied Mathematics, vol. 12, no. 2, pp. 331 - 335, 2016

