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ABSTRAC: This paper will carry out the problem from [7] to be related difference of two measurable set. The 

problem is to prove the theorem if A and B are  measurable sets such that 𝑩 ⊂ 𝑨 and 𝒎 𝑩 <  ∞ then  m( A – B) = 

m(A) – m(B). theorem proving is done through the study of properties measurable set. 
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1. INTRODUCTION 

The development of modern measurement theory is characterized by the introduction of the concept outer  measure 

by Henry Lebesgue in 1940. At that time outer measure is defined as the infimum of the total length of the intervals that 

cover the set ([7, p 55). With outer measure are introduced, has many problems that can be solved. The examples if the 

set is interval then it’s outer measure is equal with interval length, but theoretically outer measure to have a weakness, 

because the outer measure do not meet the additive properties that m * (A ∪ B) ≠ m * (A) + m * (B). That's why the 

researchers tried to cover up the weakness of the outer measure. Among researchers it is Henry Lebesgue, which defines 

the measure by using the concept outer measure. 

By using the concept of measure, important issues that exist in the analysis can be developed such as in ([4], p313) 

about the properties of the open set, that the union of an arbitrary collection of open subsets in R is open in R, and on 

another litertur is ([5], p136) if 𝐺1 and 𝐺2  are open subset of R, then 𝐺1  ∩ 𝐺2 also open. By using the concept of the 

measure, ([6], p20) give generalization abaut union of measurable set, that is the union of a sequence of measurable sets 

is measurable. Even problems in Real Analysis is not applicable, by using the concept of the measure, the problem can be 

proven to be valid. The example that if A and B are open sets in R, then A - B is not necessarily open set in R, using the 

concept of measure can be shown that if A and B are measurable sets then A - B is measurable. 

Discussion outer measure of a set associated with the power set of the set, such as defining the outer measure of ([1] 

as follows, v will designate a finite-valued, finitely subadditive outer measure defined on the power set P(X) of a 

nonempty set X.  𝜌 will designate the associated set function 𝜌(E) = v(E) – v(E’), where E ⊂ X. defining the outer 

measure can also define from the length of open interval as in the following definition. Suppose F is a collection of 

countable open intervals. For any J ∈ F, the total  𝑙(𝐼)𝐼∈𝐽   is a positive real number. Let E be any set, take a subset C of 

F to C is a collection of  J from open intervals   𝐼𝑖    such  that E⊂  𝐼𝑖𝑖 . If the set C is written C = {J: J ⊂ F and J cover 

E}. Outer measure  m * (E) of the set E is m*(E) = inf { 𝑙(𝐼𝑖𝑖 ) : {𝐼𝑖} open interval and E ⊂   𝐼𝑖𝑖 .} ([7], p55). 

Defining the measure set by [3] if v is outer measure, then Sv the v-measurable sets = {E ⊂ X/ v(G) = v(G∩E) + 

v(G∩E’)} for all G ⊂ X. Definition of the measurable set, according to [7] is as follows, the set E is said measurable, if ∀ 

A ⊂ R, apply m*(A) = m*(A∩E) + m*(A∩ 𝐸𝑐), and if E is measurable set, then m * (E) = m (E). Meanwhile, according to 

([2], p115), if A and B are measurable sets, then m(A∪ 𝐵) = m(A) + m(B) – m(A∩ 𝐵). This means that m (A ∪ B) ≤ m (A) 

+ m (B) for an measure set A and B, 

This paper will carry out the problem from ([7], p68) to be related difference of two measurable set. The problem is to 

prove the theorem if A and B are  measurable sets such that 𝐵 ⊂ 𝐴 and 𝑚 𝐵 <  ∞ then  m( A – B) = m(A) – m(B). 

theorem proving is done through the study of properties measurable set. 

 

2. PROPERTIES OF MEASURABLE SET 

Theorem 1. If E is measurable set then 𝐸𝑐  is measurable set. 

Proof: Because E is measurable set, by definition  ∀ A ⊂ R,  we have  m*(A) = m*(A∩E) + m*(A∩ 𝐸𝑐)  = m*(A∩ 𝐸𝑐) + 

m*(A∩E)  = m*(A∩ 𝐸𝑐) + m*(A∩ (𝐸𝑐)𝑐) 

So 𝐸𝑐  is measurable set. 

Theorem 2 if D and E measurable set, then D∩E measurable 

Proof: Because D is measurable set, by definition, ∀ A ⊂ R, 

 We have  m*(A) = m*(A∩D) + m*(A∩ 𝐷𝑐). 

                         = m*((A∩ 𝐷) ∩ 𝐸) + m*((A∩D)∩ 𝐸𝑐) + m*(A∩ 𝐷𝑐). 

                            = m*(A∩(D∩E)) + m*(A∩ 𝐷𝑐) + m*(A∩(D∩ 𝐸𝑐)) 

                         ≥ m*(A∩(D∩E)) + m*(A∩(𝐷𝑐 ∪ 𝐸𝑐)  
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                                          Because  A∩ (𝐷𝑐 ∪ 𝐸𝑐) = (A∩ 𝐷𝑐) ∪ (𝐴 ∩ (𝐷 ∩ 𝐸𝑐) 

                            = m*(A∩(D∩E)) + m*(A∩ (𝐷 ∩ 𝐸)𝑐) 

then m*(A) ≥ m*(A∩(D∩E)) + m*(A∩ (𝐷 ∩ 𝐸)𝑐) ………………………..1) 

Because A = (A∩ (𝐷 ∩ 𝐸)) ∪ (𝐴 ∩ (𝐷 ∩ 𝐸)𝑐), then 

m*(A) ≤ m*((A∩ (𝐷 ∩ 𝐸) + m*(𝐴 ∩ (𝐷 ∩ 𝐸)𝑐)………………………..2) 

from 1) and 2) we have m*(A) = m*((A∩ (𝐷 ∩ 𝐸) + m*(𝐴 ∩ (𝐷 ∩ 𝐸)𝑐) 

So  D∩ 𝐸 measurable 

Theorem 3 If {E1, E2, …, En} are finite collection of measurable set, then  ∪𝑖=1
𝑛 𝐸𝑖  is measurable 

Proof : We use induction of n, as below; 

- Show true for n = 1 

for 𝑛 = 1 we have  ∪𝑖=1
1 𝐸1= E1, because E1 measurable, then ∪𝑖=1

1 𝐸1 measurable (true) 

- Assume true for n = k-1 

for 𝑛 = 𝑘 − 1 we have  ∪𝑖=1
𝑘−1 𝐸𝑖  measurable 

- It will be proved ∪𝑖=1
𝑘 𝐸𝑖  measurable 

∪𝑖=1
𝑘 𝐸𝑖  = 𝐸1 ∪ 𝐸2 ∪ …∪ 𝐸𝑘−1 ∪ 𝐸𝑘  

              = ∪𝑖=1
𝑘−1 𝐸𝑖 ∪ 𝐸𝑘  

Because ∪𝑖=1
𝑘−1 𝐸𝑖  measurable, and Ek measurable, then  

∪𝑖=1
𝑘−1 𝐸𝑖 ∪ 𝐸𝑘 =∪𝑖=1

𝑘 𝐸𝑖  measurable. 

Theorem 4 If {E1, E2, …, En} are finite collection of measurable set, then  ∩𝑖=1
𝑛 𝐸𝑖  is measurable 

Proof: We use induction of n, as below; 

- Show true for n = 1 

for 𝑛 = 1 we have  ∩𝑖=1
1 𝐸1 = E1  because E1 measurable, then ∩𝑖=1

1 𝐸1 measurable (true) 

- Assume true for n = k-1 

for 𝑛 = 𝑘 − 1 we have  ∩𝑖=1
𝑘−1 𝐸𝑖  measurable 

- It will be proved ∩𝑖=1
𝑘 𝐸𝑖  measurable 

∩𝑖=1
𝑘 𝐸𝑖  = 𝐸1 ∩ 𝐸2 ∩ …∩ 𝐸𝑘−1 ∩ 𝐸𝑘  

              = ∩𝑖=1
𝑘−1 𝐸𝑖 ∩ 𝐸𝑘  

Because ∩𝑖=1
𝑘−1 𝐸𝑖  measurable, and Ek measurable, then  ∩𝑖=1

𝑘−1 𝐸𝑖 ∩ 𝐸𝑘 =∩𝑖=1
𝑘 𝐸𝑖  measurable. 

Teorema  5 Let 𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛  are finite sequance from disjoint measurable sets, then for arbitrary set A. 

𝑚∗  𝐴    𝐸𝑖

𝑛

𝐼=1

  =  𝑚∗ 𝐴 ∩ 𝐸𝑖 

𝑛

𝑖=1

 

 

Proof: We use induction,  

1) for 𝑛 = 1 thru, because  𝑚∗ 𝐴   𝐸𝑖
1
𝐼=1   = 𝑚∗ 𝐴 ∩ 𝐸1 =  𝑚∗ 𝐴 ∩ 𝐸𝑖 

1
𝑖=1  

2) Assume the statement is true for 𝑛 = 𝑘 − 1 with 1 < 𝑘 ≤ 𝑛, then 

𝑚∗ 𝐴   𝐸𝑖
𝑘−1
𝐼=1   =  𝑚∗ 𝐴 ∩ 𝐸𝑖 

𝑘−1
𝑖=1   (1) 

3)  It will be proved that the equation is also true for 𝑛 = 𝑘 with 1 < 𝑘 ≤ 𝑛. 

Consider the equation  (1). With added 𝑚∗(𝐴 ∩ 𝐸𝑘) for equation (1) at two side, 

𝑚∗  𝐴   𝐸𝑖

𝑘−1

𝐼=1

  + 𝑚∗(𝐴 ∩ 𝐸𝑘) =  𝑚∗ 𝐴 ∩ 𝐸𝑖 + 𝑚∗(𝐴 ∩ 𝐸𝑘)

𝑘−1

𝑖=1

 

=  𝑚∗ 𝐴 ∩ 𝐸𝑖 
𝑘
𝑖=1    (2) 

Because 𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛  disjoint, then   𝐸𝑖
𝑘−1
𝑖=1  with 𝐸𝑘  disjoint. Then 

  𝐸𝑖
𝑘−1
𝑖=1 ∩ 𝐸𝑘 = ∅   (3) 

  𝐸𝑖
𝑘−1
𝑖=1 ∩ 𝐸𝑘

𝑐 =  𝐸𝑖
𝑘−1
𝑖=1   (4) 

Consider 

  𝐸𝑖
𝑘
𝑖=1 ∩ 𝐸𝑘 =   𝐸𝑖

𝑘−1
𝑖=1 ∪ 𝐸𝑘 ∩ 𝐸𝑘 =   𝐸𝑖

𝑘−1
𝑖=1 ∩ 𝐸𝑘 ∪  𝐸𝑘 ∩ 𝐸𝑘  (5)  

  𝐸𝑖
𝑘
𝑖=1 ∩ 𝐸𝑘

𝑐 =   𝐸𝑖
𝑘−1
𝑖=1 ∪ 𝐸𝑘 ∩ 𝐸𝑘

𝑐 =   𝐸𝑖
𝑘−1
𝑖=1 ∩ 𝐸𝑘

𝑐 ∪  𝐸𝑘 ∩ 𝐸𝑘
𝑐 =  𝐸𝑖

𝑘−1
𝑖=1 ∩ 𝐸𝑘

𝑐  (6) 

form (3) with (5) and (4) with (6) we have  

 𝐸𝑖
𝑘
𝑖=1 ∩ 𝐸𝑘 = 𝐸𝑘  dan  𝐸𝑖

𝑘
𝑖=1 ∩ 𝐸𝑘

𝑐 =  𝐸𝑖
𝑘−1
𝑖=1      

Then, equation (2) can write 

𝑚∗ 𝐴   𝐸𝑖
𝑘
𝐼=1  ∩ 𝐸𝑘

𝑐 + 𝑚∗(𝐴 ∩   𝐸𝑖
𝑘
𝐼=1  ∩ 𝐸𝑘) =  𝑚∗ 𝐴 ∩ 𝐸𝑖 

𝑘
𝑖=1  (7) 

Because 𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛   measurables, then 𝐸𝑘  measurable. From definition, and take, set test 𝐴 ∩   𝐸𝑖
𝑘
𝐼=1  , then 

𝑚∗ 𝐴   𝐸𝑖
𝑘
𝐼=1  ∩ 𝐸𝑘

𝑐 + 𝑚∗ 𝐴 ∩   𝐸𝑖
𝑘
𝐼=1  ∩ 𝐸𝑘 = 𝑚∗ 𝐴 ∩   𝐸𝑖

𝑘
𝐼=1    (8) 

from (7) and (8) then 
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𝑚∗  𝐴 ∩   𝐸𝑖

𝑘

𝐼=1

  =  𝑚∗ 𝐴 ∩ 𝐸𝑖 

𝑘

𝑖=1

 

So, base from induction principle, if 𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛   are finite sequance from disjoint measurable sets, then for arbitrary 

set A, apply  

m∗  A    Ei

n

I=1

  =  m∗ A ∩ Ei 

n

i=1

 

 

Theorem  6 If 𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛   are finite sequence of disjoint measurable set, then  𝑚( 𝐸𝑖
𝑛
𝑖=1  ) =  𝑚 (𝐸𝑖)𝑛

𝑖=1  

Proof: Because  {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛} measurable and disjoint, then from theorem 3   E𝑖
𝑛
𝑖=1  measurable. Take  =  ℝ , then 

𝑚 ( E𝑖
𝑛
𝑖=1  ) = 𝑚∗ ( E𝑖

𝑛
𝑖=1 )  (outher measure equal with measure) 

         = 𝑚∗ (ℝ  ( E𝑖
𝑛
𝑖=1 )) (Because  E𝑖

𝑛
𝑖=1 =  ℝ   E𝑖

𝑛
𝑖=1 ) 

         =  𝑚∗ (ℝ  E𝑖)
𝑛
𝑖=1  ( E1, E2 , … , E𝑛   finite sequence of disjoint   

                                                               measurable set)  

    =  𝑚∗ (E𝑖)
𝑛
𝑖=1   (Because ℝ E𝑖 =  E𝑖) 

=   𝑚 (E𝑖)
𝑛
𝑖=1   (outher measure equal with measure) 

So, If 𝐸1 , 𝐸2, 𝐸3, … , 𝐸𝑛   are finite sequence of disjoint measurable set, then  𝑚( E𝑖
𝑛
𝑖=1  ) =  𝑚 (E𝑖)𝑛

𝑖=1  

 

3. PROOF THE PROBLEM 

Theorem  7  If E1 and E2 are measurable sets, such that  𝐸2 ⊂ E1 and m(E2) < ∞, then m(E1 – E2) = m(E1) – m(E2). 

Proof: Consider that: E1 – E2 =E1 ∩ E2
c 

Let: E1 = E1 ∩ R 

= E1 ∩ ( E2
c ∪E2 ) 

= ( E1 ∩ E2
c ) ∪ ( E1 ∩ E2)  Because E2 ⊂ E1 

= ( E1 ∩ E2
c )∪ E2 

Because E1 and E2 are measurable sets, base from theorem , then  E2
c is measurable. 

Base theorem 2  because E1 and E2
c  are measurable, then  E1 ∩ E2

c  is measurable. 

E1= ( E1 ∩ E2
c ) ∪ E2 

Claim: ( E1 ∩ E2
c ) ∩ E2 = Ø 

proof claim: ( E1 ∩ E2
c ) ∩ E2 = ( E1 ∩ E2 ) ∩ ( E2

c ∩ E2 ) = E2 ∩ Ø = Ø    

Because ( E1 ∩ E2
c ) ∩ E2 = Ø  dan E1= ( E1 ∩ E2

c ) ∪ E2 

Base theorem  6  we have  

m ( Ei ) = m (( E1 ∩ E2
c )  ∪ ( E2 )) 

m ( E1 ) = m  ( E1 ∩ E2
c ) + m ( E2 ) 

m ( E1 ) = m  ( E1 - E2 ) + m ( E2 ) karena E1 – E2 = E1 ∩ E2
c 

m ( E1 ) -  m ( E2 ) = m  ( E1 - E2 ). 

So,  m ( E1 - E2 ) = m (E1 ) -  m (E2 ). 

 

4. CONCLUTION 

A new properties of measurable set have been discovered recently. Properties of measurable set have attracted 

researchers of the field to investigate these newly discovered properties  in detail. This article investigate the properties of 

two measurable set that m(E1 – E2) = m(E1) – m(E2). 
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